/* Started: 6-19-2007 Spark Fun Electronics Nathan Seidle Simon Says is a memory game. Start the game by pressing one of the four buttons. When a button lights up, press the button, repeating the sequence. The sequence will get longer and longer. The game is won after 13 rounds. This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license). Simon Says game originally written in C for the PIC16F88. Ported for the ATmega168, then ATmega328, then Arduino 1.0. Fixes and cleanup by Joshua Neal Generates random sequence, plays music, and displays button lights. Simon tones from Wikipedia - A (red, upper left) - 440Hz - 2.272ms - 1.136ms pulse - a (green, upper right, an octave higher than A) - 880Hz - 1.136ms, 0.568ms pulse - D (blue, lower left, a perfect fourth higher than the upper left) 587.33Hz - 1.702ms - 0.851ms pulse - G (yellow, lower right, a perfect fourth higher than the lower left) - 784Hz - 1.276ms - 0.638ms pulse The tones are close, but probably off a bit, but they sound all right. The old version of SparkFun simon used an ATmega8. An ATmega8 ships with a default internal 1MHz oscillator. You will need to set the internal fuses to operate at the correct external 16MHz oscillator. Original Fuses: avrdude -p atmega8 -P lpt1 -c stk200 -U lfuse:w:0xE1:m -U hfuse:w:0xD9:m Command to set to fuses to use external 16MHz: avrdude -p atmega8 -P lpt1 -c stk200 -U lfuse:w:0xEE:m -U hfuse:w:0xC9:m The current version of Simon uses the ATmega328. The external osciallator was removed to reduce component count. This version of simon relies on the internal default 1MHz osciallator. Do not set the external fuses. */ #include "hardware_versions.h" // Define game parameters #define MOVES_TO_WIN 13 #define TIME_LIMIT 3000 //3000ms = 3 sec #define sbi(port_name, pin_number) (port_name |= 1< 256) { TIFR0 = (1< 0) { delay_us(1000); } } //Light the given set of LEDs void set_leds(uint8_t leds) { if ((leds & LED_RED) != 0) { sbi(LED_RED_PORT, LED_RED_PIN); } else { cbi(LED_RED_PORT, LED_RED_PIN); } if ((leds & LED_GREEN) != 0) { sbi(LED_GREEN_PORT, LED_GREEN_PIN); } else { cbi(LED_GREEN_PORT, LED_GREEN_PIN); } if ((leds & LED_BLUE) != 0) { sbi(LED_BLUE_PORT, LED_BLUE_PIN); } else { cbi(LED_BLUE_PORT, LED_BLUE_PIN); } if ((leds & LED_YELLOW) != 0) { sbi(LED_YELLOW_PORT, LED_YELLOW_PIN); } else { cbi(LED_YELLOW_PORT, LED_YELLOW_PIN); } } #ifdef BOARD_REV_6_25_08 void init_gpio(void) { // 1 = output, 0 = input DDRB = 0b11111111; DDRC = 0b00001001; // LEDs and Buttons DDRD = 0b00111110; // LEDs, buttons, buzzer, TX/RX PORTC = 0b00100110; // Enable pull-ups on buttons 0, 2, 3 PORTD = 0b01000000; // Enable pull-up on button 1 } #endif // End BOARD_REV_6_25_08 #ifdef BOARD_REV_4_9_2009 void init_gpio(void) { // 1 = output, 0 = input DDRB = 0b11111100; // Button 2,3 on PB0,1 DDRD = 0b00111110; // LEDs, buttons, buzzer, TX/RX PORTB = 0b00000011; // Enable pull-ups on buttons 2, 3 PORTD = 0b11000000; // Enable pull-up on button 0, 1 } #endif // End BOARD_REV_4_9_2009 #ifdef BOARD_REV_PTH void init_gpio(void) { // 1 = output, 0 = input DDRB = 0b11101101; // LEDs and Buttons DDRC = 0b11111111; // LEDs and Buttons DDRD = 0b10111011; // LEDs, buttons, buzzer, TX/RX PORTB = 0b00010010; // Enable pull-ups on buttons 1, 4 //PORTC = 0b00100110; // Enable pull-ups on buttons 0, 2, 3 PORTD = 0b01000100; // Enable pull-up on button 1 } #endif void ioinit(void) { init_gpio(); //Set Timer 0 Registers to Default Setting to over-ride the timer initialization made in the init() function of the \ //Arduino Wiring library (Wiring.c in the hardware/core/arduino folder) TCCR0A = 0; TIMSK0 = 0; // Init timer 0 for delay_us timing (1,000,000 / 1 = 1,000,000) //TCCR0B = (1< 70; x--) { for (y = 0; y < 3; y++) { sbi(BUZZER2_PORT, BUZZER2); cbi(BUZZER1_PORT, BUZZER1); delay_us(x); cbi(BUZZER2_PORT, BUZZER2); sbi(BUZZER1_PORT, BUZZER1); delay_us(x); } } } // Play the winner sound and lights void play_winner(void) { set_leds(LED_GREEN|LED_BLUE); winner_sound(); set_leds(LED_RED|LED_YELLOW); winner_sound(); set_leds(LED_GREEN|LED_BLUE); winner_sound(); set_leds(LED_RED|LED_YELLOW); winner_sound(); } // Plays the current contents of the game moves void play_moves(void) { uint8_t move; for (move = 0; move < nmoves; move++) { toner(moves[move], 150); delay_ms(150); } } // Adds a new random button to the game sequence, by sampling the timer void add_to_moves(void) { uint8_t new_button; // Use the lower 2 bits of the timer for the random value new_button = 1 << (TCNT2 & 0x3); moves[nmoves++] = new_button; } // Adds a user defined button to the game sequence, by waiting for their input void add_to_moves_battle(void) { uint8_t new_button; // wait for user to input next move new_button = wait_for_button(); toner(new_button, 150); moves[nmoves++] = new_button; } // Toggle buzzer every buzz_delay_us, for a duration of buzz_length_ms. void buzz_sound(uint16_t buzz_length_ms, uint16_t buzz_delay_us) { uint32_t buzz_length_us; buzz_length_us = buzz_length_ms * (uint32_t)1000; while (buzz_length_us > buzz_delay_us*2) { buzz_length_us -= buzz_delay_us*2; // Toggle the buzzer at various speeds cbi(BUZZER1_PORT, BUZZER1); sbi(BUZZER2_PORT, BUZZER2); delay_us(buzz_delay_us); sbi(BUZZER1_PORT, BUZZER1); cbi(BUZZER2_PORT, BUZZER2); delay_us(buzz_delay_us); } } /* Light an LED and play tone red, upper left: 440Hz - 2.272ms - 1.136ms pulse green, upper right: 880Hz - 1.136ms - 0.568ms pulse blue, lower left: 587.33Hz - 1.702ms - 0.851ms pulse yellow, lower right: 784Hz - 1.276ms - 0.638ms pulse */ void toner(uint8_t which, uint16_t buzz_length_ms) { set_leds(which); switch (which) { case LED_RED: buzz_sound(buzz_length_ms, 1136); break; case LED_GREEN: buzz_sound(buzz_length_ms, 568); break; case LED_BLUE: buzz_sound(buzz_length_ms, 851); break; case LED_YELLOW: buzz_sound(buzz_length_ms, 638); break; } // Turn off all LEDs set_leds(0); } // Show an "attract mode" display while waiting for user to press button. void attract_mode(void) { while (1) { set_leds(LED_RED); delay_ms(100); if (check_button() != 0x00) return; set_leds(LED_BLUE); delay_ms(100); if (check_button() != 0x00) return; set_leds(LED_GREEN); delay_ms(100); if (check_button() != 0x00) return; set_leds(LED_YELLOW); delay_ms(100); if (check_button() != 0x00) return; } } // Wait for a button to be pressed. // Returns one of led colors (LED_RED, etc.) if successful, 0 if timed out uint8_t wait_for_button(void) { uint16_t time_limit = TIME_LIMIT; uint8_t released = 0; uint8_t old_button; while (time_limit > 0) { uint8_t button; // Implement a small bit of debouncing old_button = button; button = check_button(); // Make sure we've seen the previous button released before accepting new buttons if (button == 0) released = 1; if (button == old_button && released == 1) { // Make sure just one button is pressed if (button == LED_RED || button == LED_BLUE || button == LED_GREEN || button == LED_YELLOW) { return button; } } delay_ms(1); time_limit--; } return 0; //Timed out } // Play the game. Returns 0 if player loses, or 1 if player wins. int game_mode(void) { nmoves = 0; int moves_to_win_var = MOVES_TO_WIN; // If in normal mode, then allow the user to win after a #define varialb up top (default is 13). if(battle) moves_to_win_var = 1000; // If in battle mode, allow the users to go up to 1000 moves! Like anyone could possibly do that :) while (nmoves < moves_to_win_var) { uint8_t move; // Add a button to the current moves, then play them back if(battle) add_to_moves_battle(); // If in battle mode, then listen for user input to choose the next step else add_to_moves(); if(battle) ; // If in battle mode, then don't play back the pattern, it's up the the users to remember it - then add on a move. else play_moves(); // Then require the player to repeat the sequence. for (move = 0; move < nmoves; move++) { uint8_t choice = wait_for_button(); // If wait timed out, player loses. if (choice == 0) return 0; toner(choice, 150); // If the choice is incorect, player loses. if (choice != moves[move]) { return 0; } } // Player was correct, delay before playing moves if(battle) { //reduced wait time, because we want to allow the battle to go very fast! //plus, if you use the delay(1000), then it may miss capturing the users next input. delay_ms(100); } else delay_ms(1000); } // Player wins! return 1; } void setup() { } void loop() { // Setup IO pins and defaults ioinit(); // Check to see if LOWER LEFT BUTTON is pressed if (check_button() == LED_YELLOW){ while(1){ buzz(5); delay_ms(750); if (check_button() == 0x00){ while (1) beegees_loop(); } } } // Check to see if LOWER RIGHT BUTTON is pressed if (check_button() == LED_GREEN){ while(1){ buzz(5); delay_ms(750); if (check_button() == 0x00){ battle = 1; break; } } } play_winner(); // Main loop while (1) { // Wait for user to start game attract_mode(); // Indicate the start of game play set_leds(LED_RED|LED_GREEN|LED_BLUE|LED_YELLOW); delay_ms(1000); set_leds(0); delay_ms(250); // Play game and handle result if (game_mode() != 0) { // Player won, play winner tones play_winner(); } else { // Player lost, play loser tones play_loser(); } } } // void beegees_loop() { buzz(3); delay(400); buzz(4); rest(1); delay(600); buzz(5); rest(1); rest(1); delay(400); buzz(3); rest(1); rest(1); rest(1); buzz(2); rest(1); buzz(1); buzz(2); buzz(3); rest(1); buzz(1); buzz(2); rest(1); buzz(3); rest(1); rest(1); buzz(1); rest(1); buzz(2); rest(1); buzz(3); rest(1); buzz(4); rest(1); buzz(5); rest(1); delay(700); } // void buzz(int tone){ //Declare an integer, "freq", for frequency of the note to be played. int freq; //5 different tones to select. Each tone is a different frequency. if(tone == 1){ freq = 2000; } if(tone == 2){ freq = 1800; } if(tone == 3){ freq = 1500; } if(tone == 4){ freq = 1350; } if(tone == 5){ freq = 1110; } //freq = (freq/2); // Because frequency is determined by the wavelength (the time HIGH and the time LOW), // you need to have "count" in order to keep a note the same length in time. // "count" is the number of times this function will repeat the HIGH/LOW pattern - to create the sound of the note. count = 40; // In order to keep all 5 notes the same length in time, you must compare them to the longest note (tonic) - aka the "1" note. count = count*(2000/freq); // this next function simply changes the next LED to turn on. change_led(); // this next for loop actually makes the buzzer pin move. // it uses the "count" variable to know how many times to play the frequency. // -this keeps the timing correct. for(int i = 0; i < count; i++){ digitalWrite(BUZZER1, HIGH); digitalWrite(BUZZER2, LOW); delayMicroseconds(freq); digitalWrite(BUZZER1, LOW); digitalWrite(BUZZER2, HIGH); delayMicroseconds(freq); } delay(60); } // void rest(int tone){ int freq; if(tone == 1){ freq = 2000; } if(tone == 2){ freq = 1800; } if(tone == 3){ freq = 1500; } if(tone == 4){ freq = 1350; } if(tone == 5){ freq = 1110; } //freq = (freq/2); count = 40; count = count*(2000/freq); //change_led(); for(int i = 0 ; i < count ; i++) { digitalWrite(BUZZER1, LOW); delayMicroseconds(freq); digitalWrite(BUZZER1, LOW); delayMicroseconds(freq); } delay(75); } // void change_led() { if(counter > 3) { counter = 0; } set_leds(1 << counter); counter += 1; }