"Debounce" controller, flesh out logic

This commit is contained in:
Neale Pickett 2013-03-30 20:03:10 -06:00
parent 26c67bee8f
commit c8a3b50681
1 changed files with 136 additions and 135 deletions

249
main.c
View File

@ -8,14 +8,20 @@
// If you want scores to go over 199, you need 8 // If you want scores to go over 199, you need 8
const int nsr = 6; const int nsr = 6;
volatile bool tick = false; // Set high when clock ticks //
uint16_t time = 0; // Tenths of a second elapsed since boot // Timing stuff
//
// Make sure JIFFY_uS is going to be an integer and not a float!
#define JIFFIES_PER_SECOND 50
#define JIFFY_uS (1000000 / JIFFIES_PER_SECOND)
volatile uint32_t jiffies = 0;
volatile bool tick = false; // Set high when jiffy clock ticks
// Clocks are in deciseconds // Clocks are in deciseconds
uint16_t score_a = 0; uint16_t score_a = 0;
uint16_t score_b = 0; uint16_t score_b = 0;
int16_t period_clock = -600 * 30; int16_t period_clock = -600 * 30;
int16_t jam_clock = -600 * 2; int16_t jam_clock = 0;
enum { enum {
SETUP, SETUP,
JAM, JAM,
@ -23,7 +29,6 @@ enum {
TIMEOUT TIMEOUT
} state = SETUP; } state = SETUP;
uint8_t last_controller = 0;
#define cbi(byt, bit) (byt &= ~_BV(bit)) #define cbi(byt, bit) (byt &= ~_BV(bit))
@ -57,7 +62,11 @@ uint8_t last_controller = 0;
#define bit(pin, bit, on) pin = (on ? (pin | bit) : (pin & ~bit)) #define bit(pin, bit, on) pin = (on ? (pin | bit) : (pin & ~bit))
const uint8_t seven_segment_digits[] = { const uint8_t seven_segment_digits[] = {
0x7e, 0x48, 0x3d, 0x6d, 0x4b, 0x67, 0x77, 0x4c, 0x7f, 0x6f 0x7b, 0x60, 0x37, 0x76, 0x6c, 0x5e, 0x5f, 0x70, 0x7f, 0x7e
};
const uint8_t setup_digits[] = {
0x1b, 0x12, 0x72
}; };
#define mode(on) bit(PORTD, MODE, on) #define mode(on) bit(PORTD, MODE, on)
@ -79,6 +88,23 @@ pulse()
sclk(false); sclk(false);
} }
volatile uint32_t micros = 0;
// Interrupt called every 1024 µs
SIGNAL(TIMER0_OVF_vect)
{
uint32_t m = micros;
m += 1024;
if (m >= JIFFY_uS) {
m %= JIFFY_uS;
tick = true;
jiffies += 1;
}
micros = m;
}
void void
write(uint8_t number) write(uint8_t number)
{ {
@ -101,49 +127,14 @@ write_num(uint16_t number, int digits)
uint16_t divisor = 1; uint16_t divisor = 1;
int i; int i;
for (i = 1; i < digits; i += 1) {
divisor *= 10;
}
for (i = 0; i < digits; i += 1) { for (i = 0; i < digits; i += 1) {
uint16_t n = (number / divisor) % 10; uint16_t n = (number / divisor) % 10;
write(seven_segment_digits[n]); write(seven_segment_digits[n]);
divisor /= 10; divisor *= 10;
} }
} }
/* Set up grayscale */
void
setup_gs()
{
int i;
for (i = 0; i < nsr; i += 1) {
write(0);
}
latch();
}
/*
* Set up dot correction.
*
* We don't use dot correction so this is easy: set everything to full brightness.
*/
void
setup_dc()
{
int i;
mode(true);
sin(true);
for (i = 0; i < nsr * 96; i += 1) {
pulse();
}
latch();
mode(false);
}
/* /*
* Update all the digits * Update all the digits
*/ */
@ -153,9 +144,6 @@ draw()
uint16_t clk; uint16_t clk;
//XXX testing //XXX testing
#if 1
write_num(jam_clock / 10, 2);
#else
write_num(score_a, 3); write_num(score_a, 3);
@ -169,12 +157,18 @@ draw()
write_num(clk, 4); write_num(clk, 4);
} }
if (state == SETUP) {
write(setup_digits[2]);
write(setup_digits[1]);
write(setup_digits[1]);
write(setup_digits[0]);
} else {
clk = (abs(jam_clock / 600) % 10) * 1000; clk = (abs(jam_clock / 600) % 10) * 1000;
clk += abs(jam_clock) % 600; clk += abs(jam_clock) % 600;
write_num(clk, 4); write_num(clk, 4);
}
write_num(score_b, 2); //write_num(score_b, 2);
#endif
latch(); latch();
pulse(); pulse();
@ -189,6 +183,7 @@ nesprobe()
int i; int i;
uint8_t state = 0; uint8_t state = 0;
uint8_t ret = 0; uint8_t ret = 0;
static uint8_t last_controller = 0;
PORTD |= NESLTCH; PORTD |= NESLTCH;
PORTD &= ~NESLTCH; PORTD &= ~NESLTCH;
@ -215,81 +210,54 @@ void
update_controller() update_controller()
{ {
uint8_t val = nesprobe(); uint8_t val = nesprobe();
int inc = 1;
if (val & BTN_A) { if ((val & BTN_A) && (state != JAM)) {
switch (state) {
case JAM:
jam_clock = -300;
state = LINEUP;
break;
default:
jam_clock = -600 * 2;
state = JAM; state = JAM;
break; jam_clock = -600 * 2;
}
} }
if (val & BTN_START) { if ((val & BTN_B) && (state != LINEUP)) {
switch (state) { state = LINEUP;
case TIMEOUT: jam_clock = -300;
break; }
default:
if ((val & BTN_START) && (state != TIMEOUT)) {
state = TIMEOUT; state = TIMEOUT;
jam_clock = 1; jam_clock = 1;
} }
if (val & BTN_SELECT) {
inc = -1;
// XXX: if in timeout, select digit to adjust
} }
if (val & BTN_LEFT) { if (val & BTN_LEFT) {
score_a += 1; score_a += inc;
} }
if (val & BTN_RIGHT) { if (val & BTN_RIGHT) {
score_b += 1; score_b += inc;
}
if (val) {
PORTB = 0xff;
} else {
PORTB = 0;
} }
} }
/* /*
* Run logic for this decisecond *
* Main program
*
*/ */
void void
loop() init(void)
{ {
switch (state) { // Set timer 0 interrupt clock divider to 64
case SETUP:
break;
default:
if (jam_clock) {
jam_clock += 1;
}
}
switch (state) {
case SETUP:
case TIMEOUT:
break;
default:
if (period_clock) {
period_clock += 1;
}
}
draw();
}
int
main(void)
{
uint16_t jiffies = 0;
DDRD = ~(NESSOUT);
DDRB = 0xff;
PORTD = 0;
//setup_gs();
setup_dc();
// this combination is for the standard 168/328/1280/2560
TCCR0B = 0x03; TCCR0B = 0x03;
// enable timer 0 overflow interrupt // enable timer 0 overflow interrupt
@ -297,41 +265,74 @@ main(void)
// Enable interrupts // Enable interrupts
sei(); sei();
}
// Now actually run void
for (;;) { setup()
{
int i;
DDRD = ~(NESSOUT);
DDRB = 0xff;
PORTD = 0;
// Datasheet says you have to do this before DC initialization.
// In practice it doesn't seem to matter, but what the hey.
draw();
// Initialize dot correction logic
mode(true);
sin(true);
for (i = 0; i < nsr * 96; i += 1) {
pulse();
}
latch();
mode(false);
}
void
loop()
{
uint32_t i; uint32_t i;
update_controller();
if (tick) { if (tick) {
tick = false; tick = false;
jiffies += 1;
if (jiffies == 10) { update_controller();
jiffies = 0;
time += 1;
loop(); if (jiffies % (JIFFIES_PER_SECOND / 10) == 0) {
switch (state) {
PORTB ^= 0xff; case SETUP:
} break;
case TIMEOUT:
if (period_clock) {
period_clock += 1;
} }
// fall through
case JAM:
case LINEUP:
if (jam_clock) {
jam_clock += 1;
} }
} }
draw();
}
}
}
volatile uint32_t micros = 0; int
main(void)
// This is called every 1024 µs
SIGNAL(TIMER0_OVF_vect)
{ {
uint32_t m = micros; init();
setup();
for (;;) {
loop();
}
return 0;
}
m += 1024;
if (m >= 10000) {
tick = true;
m %= 10000;
}
micros = m;
}