#include #include #include #include "ti.h" // Number of shift registers in your scoreboard // If you want scores to go over 199, you need 8 const int nsr = 6; // // Timing stuff // volatile uint32_t jiffies = 0; volatile bool tick = false; // Set high when jiffy clock ticks // Clocks are in deciseconds uint16_t score_a = 0; uint16_t score_b = 0; int16_t period_clock = -(30 * 60 * 10); int16_t jam_duration = -(2 * 60 * 10); int16_t lineup_duration = (-30 * 10); int16_t jam_clock = 0; enum { SETUP, JAM, LINEUP, TIMEOUT } state = SETUP; // NES Controller buttons #define BTN_A _BV(7) #define BTN_B _BV(6) #define BTN_SELECT _BV(5) #define BTN_START _BV(4) #define BTN_UP _BV(3) #define BTN_DOWN _BV(2) #define BTN_LEFT _BV(1) #define BTN_RIGHT _BV(0) #define bit(pin, bit, on) pin = (on ? (pin | bit) : (pin & ~bit)) const uint8_t seven_segment_digits[] = { 0x7b, 0x60, 0x37, 0x76, 0x6c, 0x5e, 0x5f, 0x70, 0x7f, 0x7e }; const uint8_t setup_digits[] = { 0x1b, 0x12, 0x72 }; void latch() { xlat(true); xlat(false); } void pulse() { sclk(true); sclk(false); } void write(uint8_t number) { int i; int j; // MSB first for (i = 7; i >= 0; i -= 1) { sin(number & (1 << i)); for (j = 0; j < 12; j += 1) { pulse(); } } } void write_num(uint16_t number, int digits) { uint16_t divisor = 1; int i; for (i = 0; i < digits; i += 1) { uint16_t n = (number / divisor) % 10; write(seven_segment_digits[n]); divisor *= 10; } } /* * Update all the digits */ void draw() { uint16_t clk; //XXX testing write_num(score_a, 3); if ((state == TIMEOUT) && (jam_clock % 8 == 0)) { for (clk = 0; clk < 4; clk += 1) { write(0); } } else { clk = (abs(period_clock / 10) / 60) * 100; clk += abs(period_clock / 10) % 60; write_num(clk, 4); } if (state == SETUP) { write(setup_digits[2]); write(setup_digits[1]); write(setup_digits[1]); write(setup_digits[0]); } else { clk = (abs(jam_clock / 600) % 10) * 1000; clk += abs(jam_clock) % 600; write_num(clk, 4); } //write_num(score_b, 2); latch(); pulse(); } /* * Probe the NES controller */ uint8_t nesprobe() { int i; uint8_t state = 0; uint8_t ret = 0; static uint8_t last_controller = 0; nesltch(true); nesltch(false); for (i = 0; i < 8; i += 1) { state <<= 1; if (nesout()) { // Button not pressed } else { state |= 1; } nesclk(true); nesclk(false); } // Only report button down events. ret = (last_controller ^ state) & state; last_controller = state; return ret; } void update_controller() { uint8_t val = nesprobe(); int inc = 1; if ((val & BTN_A) && ((state != JAM) || (jam_clock == 0))) { state = JAM; jam_clock = jam_duration; } if ((val & BTN_B) && ((state != LINEUP) || (jam_clock == 0))) { state = LINEUP; jam_clock = lineup_duration; } if ((val & BTN_START) && (state != TIMEOUT)) { state = TIMEOUT; jam_clock = 1; } if (val & BTN_SELECT) { inc = -1; // XXX: if in timeout, select digit to adjust } if (val & BTN_LEFT) { score_a += inc; } if (val & BTN_RIGHT) { score_b += inc; } } /* * * Main program * */ void setup() { int i; // Datasheet says you have to do this before DC initialization. // In practice it doesn't seem to matter, but what the hey. draw(); // Initialize dot correction logic mode(true); sin(true); for (i = 0; i < nsr * 96; i += 1) { pulse(); } latch(); mode(false); } void loop() { uint32_t i; if (tick) { tick = false; update_controller(); if (jiffies % (JIFFIES_PER_SECOND / 10) == 0) { switch (state) { case SETUP: break; case TIMEOUT: if (period_clock) { period_clock += 1; } // fall through case JAM: case LINEUP: if (jam_clock) { jam_clock += 1; } } draw(); } } } int main(void) { init(); setup(); for (;;) { loop(); } return 0; }