#include #include #include #include #include // Number of shift registers in your scoreboard // If you want scores to go over 199, you need 8 const int nsr = 6; volatile bool tick = false; // Set high when clock ticks uint16_t time = 0; // Tenths of a second elapsed since boot // Clocks are in deciseconds uint16_t score_a = 0; uint16_t score_b = 0; int16_t period_clock = -600 * 30; int16_t jam_clock = -600 * 2; enum { SETUP, JAM, LINEUP, TIMEOUT } state = SETUP; uint8_t last_controller = 0; #define cbi(byt, bit) (byt &= ~_BV(bit)) #define sbi(byt, bit) (byt |= _BV(bit)) #define MODE _BV(0) #define SIN _BV(1) #define SCLK _BV(2) #define XLAT _BV(3) // Connect GSCLK to SCLK // Connect BLANK to XLAT // TRUST ME, THIS TOTALLY WORKS #define NESCLK _BV(4) #define NESLTCH _BV(5) #define NESSOUT _BV(6) // NES Controller buttons #define BTN_A _BV(7) #define BTN_B _BV(6) #define BTN_SELECT _BV(5) #define BTN_START _BV(4) #define BTN_UP _BV(3) #define BTN_DOWN _BV(2) #define BTN_LEFT _BV(1) #define BTN_RIGHT _BV(0) #define bit(pin, bit, on) pin = (on ? (pin | bit) : (pin & ~bit)) const uint8_t seven_segment_digits[] = { 0x7e, 0x48, 0x3d, 0x6d, 0x4b, 0x67, 0x77, 0x4c, 0x7f, 0x6f }; #define mode(on) bit(PORTD, MODE, on) #define sin(on) bit(PORTD, SIN, on) #define sclk(on) bit(PORTD, SCLK, on) #define xlat(on) bit(PORTD, XLAT, on) void latch() { xlat(true); xlat(false); } void pulse() { sclk(true); sclk(false); } void write(uint8_t number) { int i; int j; // MSB first for (i = 7; i >= 0; i -= 1) { sin(number & (1 << i)); for (j = 0; j < 12; j += 1) { pulse(); } } } void write_num(uint16_t number, int digits) { uint16_t divisor = 1; int i; for (i = 1; i < digits; i += 1) { divisor *= 10; } for (i = 0; i < digits; i += 1) { uint16_t n = (number / divisor) % 10; write(seven_segment_digits[n]); divisor /= 10; } } /* Set up grayscale */ void setup_gs() { int i; for (i = 0; i < nsr; i += 1) { write(0); } latch(); } /* * Set up dot correction. * * We don't use dot correction so this is easy: set everything to full brightness. */ void setup_dc() { int i; mode(true); sin(true); for (i = 0; i < nsr * 96; i += 1) { pulse(); } latch(); mode(false); } /* * Update all the digits */ void draw() { uint16_t clk; //XXX testing #if 1 write_num(jam_clock / 10, 2); #else write_num(score_a, 3); if ((state == TIMEOUT) && (jam_clock % 8 == 0)) { for (clk = 0; clk < 4; clk += 1) { write(0); } } else { clk = (abs(period_clock / 10) / 60) * 100; clk += abs(period_clock / 10) % 60; write_num(clk, 4); } clk = (abs(jam_clock / 600) % 10) * 1000; clk += abs(jam_clock) % 600; write_num(clk, 4); write_num(score_b, 2); #endif latch(); pulse(); } /* * Probe the NES controller */ uint8_t nesprobe() { int i; uint8_t state = 0; uint8_t ret = 0; PORTD |= NESLTCH; PORTD &= ~NESLTCH; for (i = 0; i < 8; i += 1) { state <<= 1; if (PIND & NESSOUT) { // Button not pressed } else { state |= 1; } PORTD |= NESCLK; PORTD &= ~NESCLK; } // Only report button down events. ret = (last_controller ^ state) & state; last_controller = state; return ret; } void update_controller() { uint8_t val = nesprobe(); if (val & BTN_A) { switch (state) { case JAM: jam_clock = -300; state = LINEUP; break; default: jam_clock = -600 * 2; state = JAM; break; } } if (val & BTN_START) { switch (state) { case TIMEOUT: break; default: state = TIMEOUT; jam_clock = 1; } } if (val & BTN_LEFT) { score_a += 1; } if (val & BTN_RIGHT) { score_b += 1; } } /* * Run logic for this decisecond */ void loop() { switch (state) { case SETUP: break; default: if (jam_clock) { jam_clock += 1; } } switch (state) { case SETUP: case TIMEOUT: break; default: if (period_clock) { period_clock += 1; } } draw(); } int main(void) { uint16_t jiffies = 0; DDRD = ~(NESSOUT); DDRB = 0xff; PORTD = 0; //setup_gs(); setup_dc(); // this combination is for the standard 168/328/1280/2560 TCCR0B = 0x03; // enable timer 0 overflow interrupt TIMSK0 = 0x01; // Enable interrupts sei(); // Now actually run for (;;) { uint32_t i; update_controller(); if (tick) { tick = false; jiffies += 1; if (jiffies == 10) { jiffies = 0; time += 1; loop(); PORTB ^= 0xff; } } } } volatile uint32_t micros = 0; // This is called every 1024 µs SIGNAL(TIMER0_OVF_vect) { uint32_t m = micros; m += 1024; if (m >= 10000) { tick = true; m %= 10000; } micros = m; }