#include #include #include // Number of shift registers in your scoreboard // If you want scores to go over 199, you need 8 const int nsr = 6; volatile bool tick = false; // Set high when clock ticks uint16_t time = 0; // Tenths of a second elapsed since boot // Clocks are in deciseconds uint16_t score_a = 0; uint16_t score_b = 0; uint16_t period_clock = 600 * 30; uint16_t jam_clock = 600 * 2; enum { SETUP, JAM, LINEUP, TIMEOUT } state = JAM; uint8_t controller = 0; #define MODE BIT0 #define SIN BIT1 #define SCLK BIT2 #define XLAT BIT3 // Connect GSCLK to SCLK // Connect BLANK to XLAT // TRUST ME, THIS TOTALLY WORKS #define NESCLK BIT4 #define NESLTCH BIT5 #define NESSOUT BIT7 #define bit(pin, bit, on) pin = (on ? (pin | bit) : (pin & ~bit)) const uint8_t seven_segment_digits[] = { #if defined(WIKIPEDIA) 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71 #elseif defined(TOPDOWN) 0x7e, 0x48, 0x3d, 0x6d, 0x4b, 0x67, 0x77, 0x4c, 0x7f, 0x6f, #else 0x7b, 0x09, 0xb3, 0x9b, 0xc9, 0xda, 0xfa, 0x0b, 0xfb, 0xdb #endif }; #define mode(on) bit(P1OUT, MODE, on) #define sin(on) bit(P1OUT, SIN, on) #define sclk(on) bit(P1OUT, SCLK, on) #define xlat(on) bit(P1OUT, XLAT, on) void latch() { xlat(true); xlat(false); } void pulse() { sclk(true); sclk(false); } void write(uint8_t number) { int i; int j; // MSB first for (i = 7; i >= 0; i -= 1) { sin(number & (1 << i)); for (j = 0; j < 12; j += 1) { pulse(); } } } void write_num(uint16_t number, int digits) { uint16_t divisor = 1; int i; for (i = 1; i < digits; i += 1) { divisor *= 10; } for (i = 0; i < digits; i += 1) { uint16_t n = (number / divisor) % 10; write(seven_segment_digits[n]); divisor /= 10; } } void blip() { int i; for (i = 0; i < 12; i += 1) { __delay_cycles(1); } } /* Set up grayscale */ void setup_gs() { int i; for (i = 0; i < nsr; i += 1) { write(0); } latch(); } /* * Set up dot correction. * * We don't use dot correction so this is easy: set everything to full brightness. */ void setup_dc() { int i; mode(true); sin(true); for (i = 0; i < nsr * 96; i += 1) { pulse(); } latch(); mode(false); } /* * Update all the digits */ void draw() { #if 1 uint16_t clk; write_num(score_a, 3); clk = ((period_clock / 10) / 60) * 100; clk = clk + ((period_clock / 10) % 60); write_num(clk, 4); clk = ((jam_clock / 600) % 10) * 1000; clk = clk + (jam_clock % 600); write_num(clk, 4); write_num(score_b, 2); #else int i; for (i = 0; i < 12; i += 1) { write_num(sizeof(seven_segment_digits) - 1, 1); } #endif latch(); pulse(); } /* * Probe the NES controller */ uint8_t nesprobe() { int i; uint8_t state = 0; P1OUT |= NESLTCH; P1OUT &= ~NESLTCH; for (i = 0; i < 8; i += 1) { state <<= 1; if (P1IN & NESSOUT) { // Button not pressed } else { state |= 1; } P1OUT |= NESCLK; P1OUT &= ~NESCLK; } return state; } void update_controller() { uint8_t val = nesprobe(); if (val & 0x80) { switch (state) { case JAM: jam_clock = 300; state = LINEUP; break; default: jam_clock = 600 * 2; state = JAM; break; } } } /* * Run logic for this decisecond */ void loop() { if (jam_clock) { jam_clock -= 1; } if (period_clock) { period_clock -= 1; } draw(); } int main(void) { uint16_t jiffies = 0; WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog Timer P1DIR |= MODE + SIN + SCLK + XLAT + NESCLK + NESLTCH + BIT6; // P1 output bits P1DIR &= ~(NESSOUT); P1OUT = 0; setup_gs(); setup_dc(); // Enable interrupts CCTL0 |= CCIE; // Trigger interrupt on A checkpoint TACTL = TASSEL_2 + MC_1; // Set timer A to SMCLCK, up mode TACCR0 = 0x4444; // Interrupt 60 times per second __enable_interrupt(); // Now actually run for (;;) { update_controller(); if (tick) { tick = false; jiffies += 1; if (jiffies == 6) { jiffies = 0; time += 1; loop(); P1OUT ^= BIT6; } } } } // Timer A0 interrupt service routine __attribute__((interrupt(TIMER0_A0_VECTOR))) void timer_a(void) { tick = true; }