mirror of https://github.com/dirtbags/moth.git
Fix 2 tanks bugs
This commit is contained in:
parent
bbd78ab32f
commit
3cae9d7442
|
@ -1,33 +0,0 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
import asynchat
|
||||
import asyncore
|
||||
import socket
|
||||
|
||||
class Flagger(asynchat.async_chat):
|
||||
"""Use to connect to flagd and submit the current flag holder."""
|
||||
|
||||
def __init__(self, addr, auth):
|
||||
asynchat.async_chat.__init__(self)
|
||||
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
self.connect((addr, 1))
|
||||
self.push(auth + '\n')
|
||||
self.flag = None
|
||||
|
||||
def handle_read(self):
|
||||
# We don't care.
|
||||
msg = self.recv(4096)
|
||||
|
||||
def handle_error(self):
|
||||
# If we lose the connection to flagd, nobody can score any
|
||||
# points. Terminate everything.
|
||||
asyncore.close_all()
|
||||
asynchat.async_chat.handle_error(self)
|
||||
|
||||
def set_flag(self, team):
|
||||
if team:
|
||||
eteam = team.encode('utf-8')
|
||||
else:
|
||||
eteam = ''
|
||||
self.push(eteam + '\n')
|
||||
self.flag = team
|
|
@ -1,35 +0,0 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
import os
|
||||
import string
|
||||
import sys
|
||||
from codecs import open
|
||||
|
||||
from paths import *
|
||||
|
||||
template_fn = os.path.join(LIB, 'template.html')
|
||||
template = string.Template(open(template_fn, encoding='utf-8').read())
|
||||
|
||||
base = BASE_URL
|
||||
css = base + 'ctf.css'
|
||||
|
||||
def substitute(title, body, base=base, hdr='', body_class='', onload='', links=''):
|
||||
return template.substitute(title=title,
|
||||
hdr=hdr,
|
||||
body_class=body_class,
|
||||
base=base,
|
||||
links=links,
|
||||
onload=onload,
|
||||
body=body)
|
||||
|
||||
def serve(title, body, **kwargs):
|
||||
out = substitute(title, body, **kwargs)
|
||||
print 'Content-type: text/html'
|
||||
print 'Content-length: %d' % len(out)
|
||||
print
|
||||
sys.stdout.write(out)
|
||||
sys.stdout.flush()
|
||||
|
||||
def write(filename, title, body, **kwargs):
|
||||
f = open(filename, 'w', encoding='utf-8')
|
||||
f.write(substitute(title, body, **kwargs))
|
|
@ -1,6 +0,0 @@
|
|||
VAR = "/opt/ctf/var"
|
||||
WWW = "/opt/ctf/www"
|
||||
LIB = "/opt/ctf/lib"
|
||||
BIN = "/opt/ctf/bin"
|
||||
SBIN = "/opt/ctf/sbin"
|
||||
BASE_URL = "/"
|
|
@ -1,40 +0,0 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
from urllib import quote
|
||||
import teams
|
||||
import time
|
||||
import os
|
||||
import paths
|
||||
|
||||
pointsdir = os.path.join(paths.VAR, 'points')
|
||||
|
||||
def award(cat, team, points):
|
||||
if not team:
|
||||
team = teams.house
|
||||
now = time.strftime('%Y-%m-%dT%H:%M:%S')
|
||||
pid = os.getpid()
|
||||
qcat = quote(cat, '')
|
||||
qteam = quote(team, '')
|
||||
basename = '%s.%d.%s.%s' % (now, pid, qcat, qteam)
|
||||
# FAT can't handle :
|
||||
basename = basename.replace(':', '.')
|
||||
tmpfn = os.path.join(pointsdir, 'tmp', basename)
|
||||
curfn = os.path.join(pointsdir, 'cur', basename)
|
||||
f = open(tmpfn, 'w')
|
||||
f.write('%s\t%s\t%s\t%d\n' % (now, cat, team, points))
|
||||
f.close()
|
||||
os.rename(tmpfn, curfn)
|
||||
|
||||
def main():
|
||||
import optparse
|
||||
|
||||
p = optparse.OptionParser('%prog CATEGORY TEAM POINTS')
|
||||
opts, args = p.parse_args()
|
||||
if len(args) != 3:
|
||||
p.error('Wrong number of arguments')
|
||||
cat, team, points = args
|
||||
points = int(points)
|
||||
award(cat, team, points)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -1,72 +0,0 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
import fcntl
|
||||
import time
|
||||
import os
|
||||
from urllib import quote, unquote
|
||||
import paths
|
||||
|
||||
house = 'dirtbags'
|
||||
passwdfn = os.path.join(paths.VAR, 'passwd')
|
||||
team_colors = ['F0888A', '88BDF0', '00782B', '999900', 'EF9C00',
|
||||
'F4B5B7', 'E2EFFB', '89CA9D', 'FAF519', 'FFE7BB',
|
||||
'BA88F0', '8DCFF4', 'BEDFC4', 'FFFAB2', 'D7D7D7',
|
||||
'C5B9D7', '006189', '8DCB41', 'FFCC00', '898989']
|
||||
|
||||
teams = {}
|
||||
built = 0
|
||||
def build_teams():
|
||||
global teams, built
|
||||
if not os.path.exists(passwdfn):
|
||||
return
|
||||
if os.path.getmtime(passwdfn) <= built:
|
||||
return
|
||||
|
||||
teams = {}
|
||||
try:
|
||||
f = open(passwdfn)
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
team, passwd, color = map(unquote, line.strip().split('\t'))
|
||||
teams[team] = (passwd, color)
|
||||
except IOError:
|
||||
pass
|
||||
built = time.time()
|
||||
|
||||
def validate(team):
|
||||
build_teams()
|
||||
|
||||
def chkpasswd(team, passwd):
|
||||
validate(team)
|
||||
if teams.get(team, [None, None])[0] == passwd:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def exists(team):
|
||||
validate(team)
|
||||
if team == house:
|
||||
return True
|
||||
return team in teams
|
||||
|
||||
def add(team, passwd):
|
||||
build_teams()
|
||||
color = team_colors[len(teams)%len(team_colors)]
|
||||
|
||||
assert team not in teams, "Team already exists."
|
||||
|
||||
f = open(passwdfn, 'a')
|
||||
fcntl.lockf(f, fcntl.LOCK_EX)
|
||||
f.seek(0, 2)
|
||||
f.write('%s\t%s\t%s\n' % (quote(team, ''),
|
||||
quote(passwd, ''),
|
||||
quote(color, '')))
|
||||
|
||||
def color(team):
|
||||
validate(team)
|
||||
t = teams.get(team)
|
||||
if not t:
|
||||
return '888888'
|
||||
return t[1]
|
|
@ -1,46 +0,0 @@
|
|||
import math
|
||||
|
||||
class Function(object):
|
||||
"""Represents a single condition or action. This doc string is printed
|
||||
as user documentation. You should override it to say something useful."""
|
||||
|
||||
def __call__(self, tank):
|
||||
"""The __call__ method should be of this basic form. Actions
|
||||
should return None, conditions should return True or False. Actions
|
||||
should utilize the set* methods of tanks. Conditions can utilize the
|
||||
tanks get* methods."""
|
||||
pass
|
||||
|
||||
def _limitArgs(self, args, max):
|
||||
"""Raises a ValueError if there are more than max args."""
|
||||
if len(args) > max:
|
||||
raise ValueError("Too many arguments: %s" % ','.join(args))
|
||||
|
||||
def _checkRange(self, value, name, min=0, max=100):
|
||||
"""Check that the value is in the given range.
|
||||
Raises an exception with useful info for invalid values. Name is used to
|
||||
let the user know which value is wrong."""
|
||||
try:
|
||||
value = int(value)
|
||||
except:
|
||||
raise ValueError("Invalid %s value: %s" % (name, value))
|
||||
assert value >= min and value <= max, "Invalid %s. %ss must be in"\
|
||||
" the %s %d-%d" % \
|
||||
(name, name.capitalize(), value, min, max)
|
||||
|
||||
return value
|
||||
|
||||
def _convertAngle(self, value, name):
|
||||
"""Parse the given value as an angle in degrees, and return its value
|
||||
in radians. Raise useful errors.
|
||||
Name is used in the errors to describe the field."""
|
||||
try:
|
||||
angle = math.radians(value)
|
||||
except:
|
||||
raise ValueError("Invalid %s value: %s" % (name, value))
|
||||
|
||||
assert angle >= 0 and angle < 2*math.pi, "Invalid %s; "\
|
||||
"It be in the range 0 and 359." % name
|
||||
|
||||
return angle
|
||||
|
|
@ -1,206 +0,0 @@
|
|||
import math
|
||||
|
||||
def rotatePoint(point, angle):
|
||||
"""Assuming 0,0 is the center, rotate the given point around it."""
|
||||
|
||||
x,y = point
|
||||
r = math.sqrt(x**2 + y**2)
|
||||
if r == 0:
|
||||
return 0, 0
|
||||
|
||||
theta = math.acos(x/r)
|
||||
if y < 0:
|
||||
theta = -theta
|
||||
theta = theta + angle
|
||||
return int(round(r*math.cos(theta))), int(round(r*math.sin(theta)))
|
||||
|
||||
def rotatePoly(points, angle):
|
||||
"""Rotate the given list of points around 0,0 by angle."""
|
||||
return [ rotatePoint(point, angle) for point in points ]
|
||||
|
||||
def displace(point, disp, limits):
|
||||
"""Displace point by disp, wrapping around limits."""
|
||||
x = (point[0] + disp[0])
|
||||
while x >= limits[0]:
|
||||
x = x - limits[0]
|
||||
while x < 0:
|
||||
x = x + limits[0]
|
||||
|
||||
y = (point[1] + disp[1])
|
||||
while y >= limits[1]:
|
||||
y = y - limits[1]
|
||||
while y < 0:
|
||||
y = y + limits[1]
|
||||
|
||||
return x,y
|
||||
|
||||
def displacePoly(points, disp, limits, coordSequence=False):
|
||||
"""Displace each point (x,y) in 'points' by 'disp' (x,y). The limits of
|
||||
the drawing space are assumed to be at x=0, y=0 and x=limits[0],
|
||||
y=limits[1]. If the poly overlaps the edge of the drawing space, the
|
||||
poly is duplicated on each side.
|
||||
@param coordSequence: If true, the coordinates are returned as a sequence -
|
||||
x1, y1, x2, y2, ... This is need by some PIL drawing
|
||||
commands.
|
||||
@returns: A list of polys, displaced by disp
|
||||
"""
|
||||
xDup = 0; yDup = 0
|
||||
maxX, maxY = limits
|
||||
basePoints = []
|
||||
for point in points:
|
||||
x,y = int(point[0] + disp[0]), int(point[1] + disp[1])
|
||||
|
||||
# Check if duplication is needed on each axis
|
||||
if x > maxX:
|
||||
# If this is negative, then we need to duplicate in the negative
|
||||
# direction.
|
||||
xDup = -1
|
||||
elif x < 0:
|
||||
xDup = 1
|
||||
|
||||
if y > maxY:
|
||||
yDup = -1
|
||||
elif y < 0:
|
||||
yDup = 1
|
||||
|
||||
basePoints.append( (x,y) )
|
||||
|
||||
polys = [basePoints]
|
||||
if xDup:
|
||||
polys.append([(x + maxX*xDup, y) for x,y in basePoints] )
|
||||
if yDup:
|
||||
polys.append([(x, maxY*yDup + y) for x,y in basePoints] )
|
||||
if xDup and yDup:
|
||||
polys.append([(x+maxX*xDup, maxY*yDup+y) for x,y in basePoints])
|
||||
|
||||
# Switch coordinates to sequence mode.
|
||||
# (x1, y1, x2, y2) instead of ((x1, y1), (x2, y2))
|
||||
if coordSequence:
|
||||
seqPolys = []
|
||||
for poly in polys:
|
||||
points = []
|
||||
for point in poly:
|
||||
points.extend(point)
|
||||
seqPolys.append(points)
|
||||
polys = seqPolys
|
||||
|
||||
return polys
|
||||
|
||||
def polar2cart(r, theta):
|
||||
"""Return the cartesian coordinates for r, theta."""
|
||||
x = r*math.cos(theta)
|
||||
y = r*math.sin(theta)
|
||||
return x,y
|
||||
|
||||
def minShift(center, point, limits):
|
||||
"""Get the minimum distances between the two points, given that the board
|
||||
wraps at the givin limits."""
|
||||
dx = point[0] - center[0]
|
||||
if dx < -limits[0]/2.0:
|
||||
dx = point[0] + limits[0] - center[0]
|
||||
elif dx > limits[0]/2.0:
|
||||
dx = point[0] - (center[0] + limits[0])
|
||||
|
||||
dy = point[1] - center[1]
|
||||
if dy < - limits[1]/2.0:
|
||||
dy = point[1] + limits[1] - center[1]
|
||||
elif dy > limits[1]/2.0:
|
||||
dy = point[1] - (limits[1] + center[1])
|
||||
|
||||
return dx, dy
|
||||
|
||||
def relativePolar(center, point, limits):
|
||||
"""Returns the angle, from zero, to the given point assuming this
|
||||
center is the origin. Take into account wrapping round the limits of the board.
|
||||
@returns: r, theta
|
||||
"""
|
||||
|
||||
dx, dy = minShift(center, point, limits)
|
||||
|
||||
r = math.sqrt(dx**2 + dy**2)
|
||||
theta = math.acos(dx/r)
|
||||
if dy < 0:
|
||||
theta = 2*math.pi - theta
|
||||
|
||||
return r, theta
|
||||
|
||||
def reduceAngle(angle):
|
||||
"""Reduce the angle such that it is in 0 <= angle < 2pi"""
|
||||
|
||||
while angle >= math.pi*2:
|
||||
angle = angle - math.pi*2
|
||||
while angle < 0:
|
||||
angle = angle + math.pi*2
|
||||
|
||||
return angle
|
||||
|
||||
def angleDiff(angle1, angle2):
|
||||
"""Returns the difference between the two angles. They are assumed
|
||||
to be in radians, and must be in the range 0 <= angle < 2*pi.
|
||||
@raises AssertionError: The angles given must be in the range 0 <= angle < 2pi
|
||||
@returns: The minimum distance between the two angles; The distance
|
||||
is negative if angle2 leads angle1 (clockwise)..
|
||||
"""
|
||||
|
||||
for angle in angle1, angle2:
|
||||
assert angle < 2*math.pi and angle >= 0, \
|
||||
'angleDiff: bad angle %s' % angle
|
||||
|
||||
diff = angle2 - angle1
|
||||
if diff > math.pi:
|
||||
diff = diff - 2*math.pi
|
||||
elif diff < -math.pi:
|
||||
diff = diff + 2*math.pi
|
||||
|
||||
return diff
|
||||
|
||||
def getDist(point1, point2):
|
||||
"""Returns the distance between point1 and point2."""
|
||||
dx = point2[0] - point1[0]
|
||||
dy = point2[1] - point1[1]
|
||||
|
||||
return math.sqrt(dx**2 + dy**2)
|
||||
|
||||
def segmentCircleCollision(segment, center, radius):
|
||||
"""Return True if the given circle touches the given line segment.
|
||||
@param segment: A list of two points [(x1,y1), (x2, y2)] that define
|
||||
the line segment.
|
||||
@param center: The center point of the circle.
|
||||
@param radius: The radius of the circle.
|
||||
@returns: True if the the circle touches the line segment, False otherwise.
|
||||
"""
|
||||
|
||||
a = getDist(segment[0], center)
|
||||
c = getDist(segment[1], center)
|
||||
base = getDist(segment[0], segment[1])
|
||||
|
||||
# If we're close enough to the end points, then we're close
|
||||
# enough to the segment.
|
||||
if a < radius or c < radius:
|
||||
return True
|
||||
|
||||
# First we find the are of the triangle formed by the line segment
|
||||
# and point. I use Heron's formula for the area. Using this, we'll
|
||||
# find the distance d from the point to the line. We'll later make
|
||||
# sure that the collision is with the line segment, and not just the
|
||||
# line.
|
||||
s = (a + c + base)/2
|
||||
A = math.sqrt(s*(s - a)*(s - c)*(s - base))
|
||||
d = 2*A/base
|
||||
|
||||
# print s, a, c, A, d, radius
|
||||
|
||||
# If the distance from the point to the line is more than the
|
||||
# target radius, this isn't a hit.
|
||||
if d > radius:
|
||||
return False
|
||||
|
||||
# If the distance from an endpoint to the intersection between
|
||||
# our line segment and the line perpendicular to it that passes through
|
||||
# the point is longer than the line segment, then this isn't a hit.
|
||||
elif math.sqrt(a**2 - d**2) > base or \
|
||||
math.sqrt(c**2 - d**2) > base:
|
||||
return False
|
||||
else:
|
||||
# The triangle is acute, that means we're close enough.
|
||||
return True
|
|
@ -1,399 +0,0 @@
|
|||
import fcntl
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import cgi
|
||||
from sets import Set as set
|
||||
from ctf import teams, html, paths
|
||||
from cStringIO import StringIO
|
||||
|
||||
from urllib import unquote, quote
|
||||
|
||||
import Tank
|
||||
|
||||
class NotEnoughPlayers(Exception):
|
||||
pass
|
||||
|
||||
class Pflanzarr:
|
||||
SPACING = 150
|
||||
|
||||
def __init__(self, dir):
|
||||
"""Initialize a new game of Pflanzarr.
|
||||
@param dir: The data directory."""
|
||||
|
||||
# Setup the game environment
|
||||
self._setupDirectories(dir)
|
||||
|
||||
# Figure out what game number this is.
|
||||
self.gameNum = self._getGameNum()
|
||||
self.gameFilename = os.path.join(self._resultsDir, '%04d.html' % self.gameNum)
|
||||
|
||||
tmpPlayers = os.listdir(self._playerDir)
|
||||
players = []
|
||||
for p in tmpPlayers:
|
||||
p = unquote(p)
|
||||
if (not (p.startswith('.')
|
||||
or p.endswith('#')
|
||||
or p.endswith('~'))
|
||||
and teams.exists(p)):
|
||||
players.append(p)
|
||||
|
||||
AIs = {}
|
||||
for player in players:
|
||||
AIs[player] = open(os.path.join(self._playerDir, player)).read()
|
||||
defaultAIs = self._getDefaultAIs(dir)
|
||||
|
||||
if len(players) < 1:
|
||||
raise NotEnoughPlayers()
|
||||
|
||||
# The one is added to ensure that there is at least one house
|
||||
# bot.
|
||||
cols = math.sqrt(len(players) + 1)
|
||||
if int(cols) != cols:
|
||||
cols = cols + 1
|
||||
|
||||
cols = int(cols)
|
||||
cols = max(cols, 2)
|
||||
|
||||
rows = len(players)/cols
|
||||
if len(players) % cols != 0:
|
||||
rows = rows + 1
|
||||
rows = max(rows, 2)
|
||||
|
||||
self._board = (cols*self.SPACING, rows*self.SPACING)
|
||||
|
||||
while len(players) < cols*rows:
|
||||
players.append(None)
|
||||
|
||||
self._tanks = []
|
||||
for i in range(cols):
|
||||
for j in range(rows):
|
||||
startX = i*self.SPACING + self.SPACING/2
|
||||
startY = j*self.SPACING + self.SPACING/2
|
||||
player = random.choice(players)
|
||||
players.remove(player)
|
||||
color = '#' + teams.color(player)
|
||||
tank = Tank.Tank( player, (startX, startY), color,
|
||||
self._board, testMode=True)
|
||||
if player == None:
|
||||
tank.program(random.choice(defaultAIs))
|
||||
else:
|
||||
tank.program(AIs[player])
|
||||
self._tanks.append(tank)
|
||||
|
||||
# We only want to make these once, so we do it here.
|
||||
self._tanksByX = list(self._tanks)
|
||||
self._tanksByY = list(self._tanks)
|
||||
|
||||
self._deadTanks = set()
|
||||
|
||||
def run(self, maxTurns=None):
|
||||
kills = {}
|
||||
for tank in self._tanks:
|
||||
kills[tank] = set()
|
||||
|
||||
# Open HTML output
|
||||
hdr = StringIO()
|
||||
hdr.write('<script type="application/javascript" src="../tanks.js"></script>\n'
|
||||
'<script type="application/javascript">\n')
|
||||
hdr.write('turns = [\n')
|
||||
|
||||
turn = 0
|
||||
lastTurns = 3
|
||||
while ((maxTurns is None) or turn < maxTurns) and lastTurns > 0:
|
||||
if len(self._tanks) - len(self._deadTanks) < 2:
|
||||
lastTurns = lastTurns - 1
|
||||
|
||||
near = self._getNear()
|
||||
deadThisTurn = set()
|
||||
|
||||
liveTanks = set(self._tanks).difference(self._deadTanks)
|
||||
|
||||
for tank in liveTanks:
|
||||
# Shoot now, if we said to shoot last turn
|
||||
dead = tank.fire( near[tank] )
|
||||
kills[tank] = kills[tank].union(dead)
|
||||
self._killTanks(dead, 'Shot by %s' % cgi.escape(tank.name or teams.house))
|
||||
|
||||
for tank in liveTanks:
|
||||
# We also check for collisions here, while we're at it.
|
||||
dead = tank.sense( near[tank] )
|
||||
kills[tank] = kills[tank].union(dead)
|
||||
self._killTanks(dead, 'Collision')
|
||||
|
||||
hdr.write(' [\n')
|
||||
|
||||
# Draw the explosions
|
||||
for tank in self._deadTanks:
|
||||
tank.draw(hdr)
|
||||
|
||||
# Draw the live tanks.
|
||||
for tank in self._tanksByX:
|
||||
# Have the tank run its program, move, etc.
|
||||
tank.draw(hdr)
|
||||
|
||||
hdr.write(' ],\n')
|
||||
|
||||
# Have the live tanks do their turns
|
||||
for tank in self._tanksByX:
|
||||
tank.execute()
|
||||
|
||||
turn = turn + 1
|
||||
|
||||
# Removes tanks from their own kill lists.
|
||||
for tank in kills:
|
||||
if tank in kills[tank]:
|
||||
kills[tank].remove(tank)
|
||||
|
||||
for tank in self._tanks:
|
||||
self._outputErrors(tank)
|
||||
|
||||
hdr.write('];\n')
|
||||
hdr.write('</script>\n')
|
||||
|
||||
# Decide on the winner
|
||||
winner = self._chooseWinner(kills)
|
||||
self.winner = winner.name
|
||||
|
||||
# Now generate HTML body
|
||||
body = StringIO()
|
||||
body.write(' <canvas id="battlefield" width="%d" height="%d">\n' % self._board)
|
||||
body.write(' Sorry, you need an HTML5-capable browser to see this.\n'
|
||||
' </canvas>\n'
|
||||
' <p>\n')
|
||||
if self.gameNum > 0:
|
||||
body.write(' <a href="%04d.html">← Prev</a> |' %
|
||||
(self.gameNum - 1))
|
||||
body.write(' <a href="%04d.html">Next →</a> |' %
|
||||
(self.gameNum + 1))
|
||||
body.write(' <span id="fps">0</span> fps\n'
|
||||
' </p>\n'
|
||||
' <table class="results">\n'
|
||||
' <tr>\n'
|
||||
' <th>Team</th>\n'
|
||||
' <th>Kills</th>\n'
|
||||
' <th>Cause of Death</th>\n'
|
||||
' </tr>\n')
|
||||
|
||||
tanks = self._tanks[:]
|
||||
tanks.remove(winner)
|
||||
tanks[0:0] = [winner]
|
||||
for tank in tanks:
|
||||
if tank is winner:
|
||||
rowStyle = ('style="font-weight: bold; '
|
||||
'color: #000; '
|
||||
'background-color: %s;"' % tank.color)
|
||||
else:
|
||||
rowStyle = 'style="background-color:%s; color: #000;"' % tank.color
|
||||
if tank.name:
|
||||
name = cgi.escape(tank.name)
|
||||
else:
|
||||
name = teams.house
|
||||
body.write('<tr %s><td>%s</td><td>%d</td><td>%s</td></tr>' %
|
||||
(rowStyle,
|
||||
name,
|
||||
len(kills[tank]),
|
||||
cgi.escape(tank.deathReason)))
|
||||
body.write(' </table>\n')
|
||||
|
||||
# Write everything out
|
||||
html.write(self.gameFilename,
|
||||
'Tanks round %d' % self.gameNum,
|
||||
body.getvalue(),
|
||||
hdr=hdr.getvalue(),
|
||||
onload='start(turns);')
|
||||
|
||||
|
||||
|
||||
def _killTanks(self, tanks, reason):
|
||||
for tank in tanks:
|
||||
if tank in self._tanksByX:
|
||||
self._tanksByX.remove(tank)
|
||||
if tank in self._tanksByY:
|
||||
self._tanksByY.remove(tank)
|
||||
|
||||
tank.die(reason)
|
||||
|
||||
self._deadTanks = self._deadTanks.union(tanks)
|
||||
|
||||
def _chooseWinner(self, kills):
|
||||
"""Choose a winner. In case of a tie, live tanks prevail, in case
|
||||
of further ties, a winner is chosen at random. This outputs the winner
|
||||
to the winners file and outputs a results table html file."""
|
||||
tanks = list(self._tanks)
|
||||
def winSort(t1, t2):
|
||||
"""Sort by # of kill first, then by life status."""
|
||||
result = cmp(len(kills[t1]), len(kills[t2]))
|
||||
if result != 0:
|
||||
return result
|
||||
|
||||
if t1.isDead and not t2.isDead:
|
||||
return -1
|
||||
elif not t1.isDead and t2.isDead:
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
tanks.sort(winSort)
|
||||
tanks.reverse()
|
||||
|
||||
# Get the list of potential winners
|
||||
winners = []
|
||||
for i in range(len(tanks)):
|
||||
if len( kills[tanks[0]] ) == len( kills[tanks[i]] ) and \
|
||||
tanks[0].isDead == tanks[i].isDead:
|
||||
winners.append(tanks[i])
|
||||
else:
|
||||
break
|
||||
winner = random.choice(winners)
|
||||
return winner
|
||||
|
||||
|
||||
def _outputErrors(self, tank):
|
||||
"""Output errors for each team."""
|
||||
if tank.name == None:
|
||||
return
|
||||
|
||||
if tank._program.errors:
|
||||
print tank.name, 'has errors'
|
||||
|
||||
|
||||
fileName = os.path.join(self._errorDir, quote(tank.name, ''))
|
||||
file = open(fileName, 'w')
|
||||
for error in tank._program.errors:
|
||||
file.write(error)
|
||||
file.write('\n')
|
||||
file.close()
|
||||
|
||||
def _getNear(self):
|
||||
"""A dictionary of the set of tanks nearby each tank. Nearby is
|
||||
defined as within the square centered the tank with side length equal
|
||||
twice the sensor range. Only a few tanks within the set (those in the
|
||||
corners of the square) should be outside the sensor range."""
|
||||
|
||||
self._tanksByX.sort(lambda t1, t2: cmp(t1.pos[0], t2.pos[0]))
|
||||
self._tanksByY.sort(lambda t1, t2: cmp(t1.pos[1], t2.pos[1]))
|
||||
|
||||
nearX = {}
|
||||
nearY = {}
|
||||
for tank in self._tanksByX:
|
||||
nearX[tank] = set()
|
||||
nearY[tank] = set()
|
||||
|
||||
numTanks = len(self._tanksByX)
|
||||
offset = 1
|
||||
for index in range(numTanks):
|
||||
cTank = self._tanksByX[index]
|
||||
maxRange = cTank.SENSOR_RANGE + cTank.RADIUS + 1
|
||||
near = set([cTank])
|
||||
for i in [(j + index) % numTanks for j in range(1, offset)]:
|
||||
near.add(self._tanksByX[i])
|
||||
while offset < numTanks:
|
||||
nTank = self._tanksByX[(index + offset) % numTanks]
|
||||
if (index + offset >= numTanks and
|
||||
self._board[0] + nTank.pos[0] - cTank.pos[0] < maxRange):
|
||||
near.add(nTank)
|
||||
offset = offset + 1
|
||||
elif (index + offset < numTanks and
|
||||
nTank.pos[0] - cTank.pos[0] < maxRange ):
|
||||
near.add(nTank)
|
||||
offset = offset + 1
|
||||
else:
|
||||
break
|
||||
|
||||
if offset > 1:
|
||||
offset = offset - 1
|
||||
|
||||
for tank in near:
|
||||
nearX[tank] = nearX[tank].union(near)
|
||||
|
||||
offset = 1
|
||||
for index in range(numTanks):
|
||||
cTank = self._tanksByY[index]
|
||||
maxRange = cTank.SENSOR_RANGE + cTank.RADIUS + 1
|
||||
near = set([cTank])
|
||||
for i in [(j + index) % numTanks for j in range(1, offset)]:
|
||||
near.add(self._tanksByY[i])
|
||||
while offset < numTanks:
|
||||
nTank = self._tanksByY[(index + offset) % numTanks]
|
||||
if (index + offset < numTanks and
|
||||
nTank.pos[1] - cTank.pos[1] < maxRange):
|
||||
near.add(nTank)
|
||||
offset = offset + 1
|
||||
elif (index + offset >= numTanks and
|
||||
self._board[1] + nTank.pos[1] - cTank.pos[1] < maxRange):
|
||||
near.add(nTank)
|
||||
offset = offset + 1
|
||||
else:
|
||||
break
|
||||
|
||||
if offset > 1:
|
||||
offset = offset - 1
|
||||
|
||||
for tank in near:
|
||||
nearY[tank] = nearY[tank].union(near)
|
||||
|
||||
near = {}
|
||||
for tank in self._tanksByX:
|
||||
near[tank] = nearX[tank].intersection(nearY[tank])
|
||||
near[tank].remove(tank)
|
||||
|
||||
return near
|
||||
|
||||
def _setupDirectories(self, dir):
|
||||
"""Setup all the directories needed by the game."""
|
||||
|
||||
if not os.path.exists(dir):
|
||||
os.mkdir(dir)
|
||||
|
||||
self._dir = dir
|
||||
|
||||
# Don't run more than one game at the same time.
|
||||
self._lockFile = open(os.path.join(dir, '.lock'), 'a')
|
||||
try:
|
||||
fcntl.flock(self._lockFile, fcntl.LOCK_EX|fcntl.LOCK_NB)
|
||||
except:
|
||||
sys.exit(1)
|
||||
|
||||
# Setup all the directories we'll need.
|
||||
self._resultsDir = os.path.join(dir, 'results')
|
||||
self._errorDir = os.path.join(dir, 'errors')
|
||||
self._playerDir = os.path.join(dir, 'ai', 'players')
|
||||
|
||||
def _getDefaultAIs(self, basedir):
|
||||
"""Load all the house bot AIs."""
|
||||
defaultAIs = []
|
||||
|
||||
path = os.path.join(basedir, 'ai', 'house')
|
||||
files = os.listdir(path)
|
||||
for fn in files:
|
||||
if fn.startswith('.'):
|
||||
continue
|
||||
|
||||
fn = os.path.join(path, fn)
|
||||
file = open(fn)
|
||||
defaultAIs.append(file.read())
|
||||
|
||||
return defaultAIs
|
||||
|
||||
def _getGameNum(self):
|
||||
"""Figure out what game number this is from the past games played."""
|
||||
|
||||
games = os.listdir(self._resultsDir)
|
||||
games.sort()
|
||||
if games:
|
||||
fn = games[-1]
|
||||
s, _ = os.path.splitext(fn)
|
||||
return int(s) + 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys, traceback
|
||||
try:
|
||||
p = Pflanzarr(sys.argv[1])
|
||||
p.run(int(sys.argv[3]))
|
||||
except:
|
||||
traceback.print_exc()
|
||||
print "Usage: Pflanzarr.py dataDirectory #turns"
|
||||
|
||||
|
|
@ -1,234 +0,0 @@
|
|||
"""<H2>Introduction</H2>
|
||||
You are the proud new operator of a M-375 Pflanzarr Tank. Your tank is
|
||||
equipped with a powerful laser cannon, independently rotating turret
|
||||
section, up to 10 enemy detection sensors, and a standard issue NATO hull.
|
||||
Unfortunately, it lacks seats, and thus must rely own its own wits and your
|
||||
skills at designing those wits to survive.
|
||||
|
||||
<H2>Programming Your Tank</H2>
|
||||
Your tanks are programmed using the Super Useful Command and Kontrol language,
|
||||
the very best in laser tank AI languages. It includes amazing features such
|
||||
as comments (Started by a #, ended at EOL), logic, versatility, and
|
||||
semi-colons (all lines must end in one). As with all new military systems
|
||||
it utilizes only integers; we must never rest in our
|
||||
diligence against the communist floating point conspiracy. Whitespace is
|
||||
provided by trusted contractors, and should never interfere with operations.
|
||||
<P>
|
||||
Your program should be separated into Setup and AI commands. The definitions
|
||||
section lets you designated the behaviors of its sensors and memory.
|
||||
Each setup command must begin with a '>'. Placing setup commands after
|
||||
the first AI command is a violation of protocol.
|
||||
Here are some examples of correct setup commands:
|
||||
<pre class="docs">>addsensor(80, 90, 33);
|
||||
>addsensor(50, 0, 10, 1);
|
||||
>addtimer(3);</pre>
|
||||
|
||||
The AI section will act as the brain of your tank. Each AI line is
|
||||
separated into a group of conditions functions and a group of action
|
||||
functions. If all the conditions are satisfactory (true), all of the actions
|
||||
are given as orders. Conditions are separated by ampersands, actions separated
|
||||
by periods. Here are some examples of AI commands:
|
||||
<pre class="docs">
|
||||
sensor(1) & sensor(2) & fireready() : fire();
|
||||
sensor(0,0)&sin(5): move(40, 30) . turretcw(50);
|
||||
sensor(4) & random(4,5) : led(1).settoggle(0,1);</pre>
|
||||
|
||||
Your tank will check its program each turn, and attempt to the best of its
|
||||
abilities to carry out its orders (or die trying). Like any military mind,
|
||||
your tank may receive a plethora of often conflicting orders and information.
|
||||
This a SMART TANK, however. It knows that the proper thing to do with each
|
||||
subsystem is to have that subsystem follow only the last order given each turn.
|
||||
"""
|
||||
|
||||
import traceback
|
||||
import conditions
|
||||
import actions
|
||||
import setup
|
||||
|
||||
class Statement(object):
|
||||
"""Represents a single program statement. If all the condition Functions
|
||||
evaluate to True, the actions are all executed in order."""
|
||||
|
||||
def __init__(self, lineNum, line, conditions, actions):
|
||||
self.lineNum = lineNum
|
||||
self.line = line
|
||||
self._conditions = conditions
|
||||
self._actions = actions
|
||||
|
||||
def __call__(self, tank):
|
||||
success = True
|
||||
for condition in self._conditions:
|
||||
if not condition(tank):
|
||||
success = False
|
||||
break
|
||||
|
||||
if success:
|
||||
for action in self._actions:
|
||||
action(tank)
|
||||
|
||||
class Program(object):
|
||||
"""This parses and represents a Tank program."""
|
||||
CONDITION_SEP = '&'
|
||||
ACTION_SEP = '.'
|
||||
|
||||
def __init__(self, text):
|
||||
"""Initialize this program, parsing the given text."""
|
||||
self.errors = []
|
||||
|
||||
self._program, self._setup = self._parse(text)
|
||||
|
||||
def setup(self, tank):
|
||||
"""Execute all the setup actions."""
|
||||
for action in self._setup:
|
||||
try:
|
||||
action(tank)
|
||||
except Exception, msg:
|
||||
self.errors.append("Bad setup action, line %d, msg: %s" % \
|
||||
(action.lineNum, msg))
|
||||
|
||||
def __call__(self, tank):
|
||||
"""Execute this program on the given tank."""
|
||||
for statement in self._program:
|
||||
try:
|
||||
statement(tank)
|
||||
except Exception, msg:
|
||||
traceback.print_exc()
|
||||
self.errors.append('Error executing program. \n'
|
||||
'(%d) - %s\n'
|
||||
'msg: %s\n' %
|
||||
(statement.lineNum, statement.line, msg) )
|
||||
|
||||
def _parse(self, text):
|
||||
"""Parse the text of the given program."""
|
||||
program = []
|
||||
setup = []
|
||||
inSetup = True
|
||||
lines = text.split(';')
|
||||
lineNum = 0
|
||||
for line in lines:
|
||||
lineNum = lineNum + 1
|
||||
|
||||
originalLine = line
|
||||
|
||||
# Remove Comments
|
||||
parts = line.split('\n')
|
||||
for i in range(len(parts)):
|
||||
comment = parts[i].find('#')
|
||||
if comment != -1:
|
||||
parts[i] = parts[i][:comment]
|
||||
# Remove all whitespace
|
||||
line = ''.join(parts)
|
||||
line = line.replace('\r', '')
|
||||
line = line.replace('\t', '')
|
||||
line = line.replace(' ', '')
|
||||
|
||||
if line == '':
|
||||
continue
|
||||
|
||||
if line.startswith('>'):
|
||||
if inSetup:
|
||||
if '>' in line[1:] or ':' in line:
|
||||
self.errors.append('(%d) Missing semicolon: %s' %
|
||||
(lineNum, line))
|
||||
continue
|
||||
|
||||
try:
|
||||
setupAction = self._parseSection(line[1:], 'setup')[0]
|
||||
setupAction.lineNum = lineNum
|
||||
setup.append(setupAction)
|
||||
except Exception, msg:
|
||||
self.errors.append('(%d) Error parsing setup line: %s'
|
||||
'\nThe error was: %s' %
|
||||
(lineNum, originalLine, msg))
|
||||
|
||||
continue
|
||||
else:
|
||||
self.errors.append('(%d) Setup lines aren\'t allowed '
|
||||
'after the first command: %s' %
|
||||
(lineNum, originalLine))
|
||||
else:
|
||||
# We've hit the first non-blank, non-comment, non-setup
|
||||
# line
|
||||
inSetup = False
|
||||
|
||||
semicolons = line.count(':')
|
||||
if semicolons > 1:
|
||||
self.errors.append('(%d) Missing semicolon: %s' %
|
||||
(lineNum, line))
|
||||
continue
|
||||
elif semicolons == 1:
|
||||
conditions, actions = line.split(':')
|
||||
else:
|
||||
self.errors.append('(%d) Invalid Line, no ":" seperator: %s'%
|
||||
(lineNum, line) )
|
||||
|
||||
try:
|
||||
conditions = self._parseSection(conditions, 'condition')
|
||||
except Exception, msg:
|
||||
self.errors.append('(%d) %s - "%s"' %
|
||||
(lineNum, msg, line) )
|
||||
continue
|
||||
|
||||
try:
|
||||
actions = self._parseSection(actions, 'action')
|
||||
except Exception, msg:
|
||||
self.errors.append('(%d) %s - "%s"' %
|
||||
(lineNum, msg, originalLine) )
|
||||
continue
|
||||
program.append(Statement(lineNum, line, conditions, actions))
|
||||
|
||||
return program, setup
|
||||
|
||||
def _parseSection(self, section, sectionType):
|
||||
"""Parses either the action or condition section of each command.
|
||||
@param section: The text of the section of the command to be parsed.
|
||||
@param sectionType: The type of section to be parsed. Should be:
|
||||
'condition', 'action', or 'setup'.
|
||||
@raises ValueError: Raises ValueErrors when parsing errors occur.
|
||||
@returns: Returns a list of parsed section components (Function objects).
|
||||
"""
|
||||
|
||||
if sectionType == 'condition':
|
||||
parts = section.split(self.CONDITION_SEP)
|
||||
functions = conditions.conditions
|
||||
if section == '':
|
||||
return []
|
||||
elif sectionType == 'action':
|
||||
parts = section.split(self.ACTION_SEP)
|
||||
functions = actions.actions
|
||||
if section == '':
|
||||
raise ValueError("The action section cannot be empty.")
|
||||
elif sectionType == 'setup':
|
||||
parts = [section]
|
||||
functions = setup.setup
|
||||
else:
|
||||
raise ValueError('Invalid section Type - Contact Contest Admin')
|
||||
|
||||
parsed = []
|
||||
for part in parts:
|
||||
|
||||
pos = part.find('(')
|
||||
if pos == -1:
|
||||
raise ValueError("Missing open paren in %s: %s" %
|
||||
(sectionType, part) )
|
||||
funcName = part[:pos]
|
||||
|
||||
if funcName not in functions:
|
||||
raise ValueError("%s function %s is not accepted." %
|
||||
(sectionType.capitalize(), funcName) )
|
||||
|
||||
if part[-1] != ')':
|
||||
raise ValueError("Missing closing paren in %s: %s" %
|
||||
(condition, sectionType) )
|
||||
|
||||
args = part[pos+1:-1]
|
||||
if args != '':
|
||||
args = args.split(',')
|
||||
for i in range(len(args)):
|
||||
args[i] = int(args[i])
|
||||
else:
|
||||
args = []
|
||||
|
||||
parsed.append(functions[funcName](*args))
|
||||
|
||||
return parsed
|
|
@ -1,479 +0,0 @@
|
|||
import math
|
||||
import random
|
||||
from sets import Set as set
|
||||
|
||||
import GameMath as gm
|
||||
import Program
|
||||
|
||||
class Tank(object):
|
||||
|
||||
# How often, in turns, that we can fire.
|
||||
FIRE_RATE = 20
|
||||
# How far the laser shoots from the center of the tank
|
||||
FIRE_RANGE = 45.0
|
||||
# The radius of the tank, from the center of the turret.
|
||||
# This is what is used for collision and hit detection.
|
||||
RADIUS = 7.5
|
||||
# Max speed, in pixels
|
||||
SPEED = 7.0
|
||||
# Max acceleration, as a fraction of speed.
|
||||
ACCEL = 35
|
||||
# Sensor range, in pixels
|
||||
SENSOR_RANGE = 90.0
|
||||
# Max turret turn rate, in radians
|
||||
TURRET_TURN_RATE = math.pi/10
|
||||
|
||||
# The max number of sensors/timers/toggles
|
||||
SENSOR_LIMIT = 10
|
||||
|
||||
def __init__(self, name, pos, color, boardSize, angle=None, tAngle=None,
|
||||
testMode=True):
|
||||
"""Create a new tank.
|
||||
@param name: The name name of the tank. Stored in self.name.
|
||||
@param pos: The starting position of the tank (x,y)
|
||||
@param color: The color of the tank.
|
||||
@param boardSize: The size of the board. (maxX, maxY)
|
||||
@param angle: The starting angle of the tank, defaults to random.
|
||||
@param tAngle: The starting turretAngle of the tank, defaults to random.
|
||||
@param testMode: When True, extra debugging information is displayed. Namely,
|
||||
arcs for each sensor are drawn, which turn white when
|
||||
activated.
|
||||
"""
|
||||
|
||||
# Keep track of what turn number it is for this tank.
|
||||
self._turn = 0
|
||||
|
||||
self.name = name
|
||||
self._testMode = testMode
|
||||
|
||||
assert len(pos) == 2 and pos[0] > 0 and pos[1] > 0, \
|
||||
'Bad starting position: %s' % str(pos)
|
||||
self.pos = pos
|
||||
|
||||
# The last speed of each tread (left, right)
|
||||
self._lastSpeed = 0.0, 0.0
|
||||
# The next speed that the tank should try to attain.
|
||||
self._nextMove = 0,0
|
||||
|
||||
# When set, the led is drawn on the tank.
|
||||
self.led = False
|
||||
|
||||
assert len(boardSize) == 2 and boardSize[0] > 0 and boardSize[1] > 0
|
||||
# The limits of the playfield (maxX, maxY)
|
||||
self._limits = boardSize
|
||||
|
||||
# The current angle of the tank.
|
||||
if angle is None:
|
||||
self._angle = random.random()*2*math.pi
|
||||
else:
|
||||
self._angle = angle
|
||||
|
||||
# The current angle of the turret
|
||||
if tAngle is None:
|
||||
self._tAngle = random.random()*2*math.pi
|
||||
else:
|
||||
self._tAngle = tAngle
|
||||
|
||||
self.color = color
|
||||
|
||||
# You can't fire until fireReady is 0.
|
||||
self._fireReady = self.FIRE_RATE
|
||||
# Means the tank will fire at it's next opportunity.
|
||||
self._fireNow = False
|
||||
# True when the tank has fired this turn (for drawing purposes)
|
||||
self._fired = False
|
||||
|
||||
# What the desired turret angle should be (from the front of the tank).
|
||||
# None means the turret should stay stationary.
|
||||
self._tGoal = None
|
||||
|
||||
# Holds the properties of each sensor
|
||||
self._sensors = []
|
||||
# Holds the state of each sensor
|
||||
self._sensorState = []
|
||||
|
||||
# The tanks toggle memory
|
||||
self.toggles = []
|
||||
|
||||
# The tanks timers
|
||||
self._timers = []
|
||||
|
||||
# Is this tank dead?
|
||||
self.isDead = False
|
||||
# The frame of the death animation.
|
||||
self._deadFrame = 10
|
||||
# Death reason
|
||||
self.deathReason = 'survived'
|
||||
|
||||
def __repr__(self):
|
||||
return '<tank: %s, (%d, %d)>' % (self.name, self.pos[0], self.pos[1])
|
||||
|
||||
def get_turn(self):
|
||||
return self._turn
|
||||
turn = property(get_turn)
|
||||
|
||||
def fire(self, near):
|
||||
"""Shoots, if ordered to and able. Returns the set of tanks
|
||||
destroyed."""
|
||||
|
||||
killed = set()
|
||||
if self._fireReady > 0:
|
||||
# Ignore the shoot order
|
||||
self._fireNow = False
|
||||
|
||||
if self._fireNow:
|
||||
self._fireNow = False
|
||||
self._fireReady = self.FIRE_RATE
|
||||
self._fired = True
|
||||
|
||||
|
||||
firePoint = gm.polar2cart(self.FIRE_RANGE,
|
||||
self._angle + self._tAngle)
|
||||
for tank in near:
|
||||
enemyPos = gm.minShift(self.pos, tank.pos, self._limits)
|
||||
if gm.segmentCircleCollision(((0,0), firePoint), enemyPos,
|
||||
self.RADIUS):
|
||||
killed.add(tank)
|
||||
else:
|
||||
self._fired = False
|
||||
|
||||
return killed
|
||||
|
||||
def addSensor(self, range, angle, width, attachedTurret=False):
|
||||
"""Add a sensor to this tank.
|
||||
@param angle: The angle, from the tanks front and going clockwise,
|
||||
of the center of the sensor. (radians)
|
||||
@param width: The width of the sensor (percent).
|
||||
@param range: The range of the sensor (percent)
|
||||
@param attachedTurret: If set, the sensor moves with the turret.
|
||||
"""
|
||||
assert range >=0 and range <= 1, "Invalid range value."
|
||||
|
||||
if len(self._sensors) >= self.SENSOR_LIMIT:
|
||||
raise ValueError("You can only have 10 sensors.")
|
||||
|
||||
range = range * self.SENSOR_RANGE
|
||||
|
||||
if attachedTurret:
|
||||
attachedTurret = True
|
||||
else:
|
||||
attachedTurret = False
|
||||
|
||||
self._sensors.append((range, angle, width, attachedTurret))
|
||||
self._sensorState.append(False)
|
||||
|
||||
def getSensorState(self, key):
|
||||
return self._sensorState[key]
|
||||
|
||||
def setMove(self, left, right):
|
||||
"""Parse the speed values given, and set them for the next move."""
|
||||
|
||||
self._nextMove = left, right
|
||||
|
||||
def setTurretAngle(self, angle=None):
|
||||
"""Set the desired angle of the turret. No angle means the turret
|
||||
should remain stationary."""
|
||||
|
||||
if angle is None:
|
||||
self._tGoal = None
|
||||
else:
|
||||
self._tGoal = gm.reduceAngle(angle)
|
||||
|
||||
def setFire(self):
|
||||
"""Set the tank to fire, next turn."""
|
||||
self._fireNow = True
|
||||
|
||||
def fireReady(self):
|
||||
"""Returns True if the tank can fire now."""
|
||||
return self._fireReady == 0
|
||||
|
||||
def addTimer(self, period):
|
||||
"""Add a timer with timeout period 'period'."""
|
||||
|
||||
if len(self._timers) >= self.SENSOR_LIMIT:
|
||||
raise ValueError('You can only have 10 timers')
|
||||
|
||||
self._timers.append(None)
|
||||
self._timerPeriods.append(period)
|
||||
|
||||
def resetTimer(self, key):
|
||||
"""Reset, and start the given timer, but only if it is inactive.
|
||||
If it is active, raise a ValueError."""
|
||||
if self._timer[key] is None:
|
||||
self._timer[key] = self._timerPeriods[key]
|
||||
else:
|
||||
raise ValueError("You can't reset an active timer (#%d)" % key)
|
||||
|
||||
def clearTimer(self, key):
|
||||
"""Clear the timer."""
|
||||
self._timer[key] = None
|
||||
|
||||
def checkTimer(self, key):
|
||||
"""Returns True if the timer has expired."""
|
||||
return self._timer[key] == 0
|
||||
|
||||
def _manageTimers(self):
|
||||
"""Decrement each active timer."""
|
||||
for i in range(len(self._timers)):
|
||||
if self._timers[i] is not None and \
|
||||
self._timers[i] > 0:
|
||||
self._timers[i] = self._timers[i] - 1
|
||||
|
||||
def program(self, text):
|
||||
"""Set the program for this tank."""
|
||||
|
||||
self._program = Program.Program(text)
|
||||
self._program.setup(self)
|
||||
|
||||
def execute(self):
|
||||
"""Execute this tanks program."""
|
||||
|
||||
# Decrement the active timers
|
||||
self._manageTimers()
|
||||
self.led = False
|
||||
|
||||
self._program(self)
|
||||
|
||||
self._move(self._nextMove[0], self._nextMove[1])
|
||||
self._moveTurret()
|
||||
if self._fireReady > 0:
|
||||
self._fireReady = self._fireReady - 1
|
||||
|
||||
self._turn = self._turn + 1
|
||||
|
||||
def sense(self, near):
|
||||
"""Detect collisions and trigger sensors. Returns the set of
|
||||
tanks collided with, plus this one. We do both these steps at once
|
||||
mainly because all the data is available."""
|
||||
|
||||
near = list(near)
|
||||
polar = []
|
||||
for tank in near:
|
||||
polar.append(gm.relativePolar(self.pos, tank.pos, self._limits))
|
||||
|
||||
for sensorId in range(len(self._sensors)):
|
||||
# Reset the sensor
|
||||
self._sensorState[sensorId] = False
|
||||
|
||||
dist, sensorAngle, width, tSens = self._sensors[sensorId]
|
||||
|
||||
# Adjust the sensor angles according to the tanks angles.
|
||||
sensorAngle = sensorAngle + self._angle
|
||||
# If the angle is tied to the turret, add that too.
|
||||
if tSens:
|
||||
sensorAngle = sensorAngle + self._tAngle
|
||||
|
||||
while sensorAngle >= 2*math.pi:
|
||||
sensorAngle = sensorAngle - 2*math.pi
|
||||
|
||||
for i in range(len(near)):
|
||||
r, theta = polar[i]
|
||||
# Find the difference between the object angle and the sensor.
|
||||
# The max this can be is pi, so adjust for that.
|
||||
dAngle = gm.angleDiff(theta, sensorAngle)
|
||||
|
||||
rCoord = gm.polar2cart(dist, sensorAngle - width/2)
|
||||
lCoord = gm.polar2cart(dist, sensorAngle + width/2)
|
||||
rightLine = ((0,0), rCoord)
|
||||
leftLine = ((0,0), lCoord)
|
||||
tankRelPos = gm.minShift(self.pos, near[i].pos, self._limits)
|
||||
if r < (dist + self.RADIUS):
|
||||
if abs(dAngle) <= (width/2) or \
|
||||
gm.segmentCircleCollision(rightLine, tankRelPos,
|
||||
self.RADIUS) or \
|
||||
gm.segmentCircleCollision(leftLine, tankRelPos,
|
||||
self.RADIUS):
|
||||
|
||||
self._sensorState[sensorId] = True
|
||||
break
|
||||
|
||||
# Check for collisions here, since we already have all the data.
|
||||
collided = set()
|
||||
for i in range(len(near)):
|
||||
r, theta = polar[i]
|
||||
if r < (self.RADIUS + near[i].RADIUS):
|
||||
collided.add(near[i])
|
||||
|
||||
# Add this tank (a collision kills both, after all
|
||||
if collided:
|
||||
collided.add(self)
|
||||
|
||||
return collided
|
||||
|
||||
def die(self, reason):
|
||||
self.isDead = True
|
||||
self.deathReason = reason
|
||||
|
||||
def _moveTurret(self):
|
||||
if self._tGoal is None or self._tAngle == self._tGoal:
|
||||
return
|
||||
|
||||
diff = gm.angleDiff(self._tGoal, self._tAngle)
|
||||
|
||||
if abs(diff) < self.TURRET_TURN_RATE:
|
||||
self._tAngle = self._tGoal
|
||||
elif diff > 0:
|
||||
self._tAngle = gm.reduceAngle(self._tAngle - self.TURRET_TURN_RATE)
|
||||
else:
|
||||
self._tAngle = gm.reduceAngle(self._tAngle + self.TURRET_TURN_RATE)
|
||||
|
||||
def _move(self, lSpeed, rSpeed):
|
||||
|
||||
assert abs(lSpeed) <= 100, "Bad speed value: %s" % lSpeed
|
||||
assert abs(rSpeed) <= 100, "Bad speed value: %s" % rSpeed
|
||||
|
||||
# Handle acceleration
|
||||
if self._lastSpeed[0] < lSpeed and \
|
||||
self._lastSpeed[0] + self.ACCEL < lSpeed:
|
||||
lSpeed = self._lastSpeed[0] + self.ACCEL
|
||||
elif self._lastSpeed[0] > lSpeed and \
|
||||
self._lastSpeed[0] - self.ACCEL > lSpeed:
|
||||
lSpeed = self._lastSpeed[0] - self.ACCEL
|
||||
|
||||
if self._lastSpeed[1] < rSpeed and \
|
||||
self._lastSpeed[1] + self.ACCEL < rSpeed:
|
||||
rSpeed = self._lastSpeed[1] + self.ACCEL
|
||||
elif self._lastSpeed[1] > rSpeed and \
|
||||
self._lastSpeed[1] - self.ACCEL > rSpeed:
|
||||
rSpeed = self._lastSpeed[1] - self.ACCEL
|
||||
|
||||
self._lastSpeed = lSpeed, rSpeed
|
||||
|
||||
# The simple case
|
||||
if lSpeed == rSpeed:
|
||||
fSpeed = self.SPEED*lSpeed/100
|
||||
x = fSpeed*math.cos(self._angle)
|
||||
y = fSpeed*math.sin(self._angle)
|
||||
# Adjust our position
|
||||
self._reposition((x,y), 0)
|
||||
return
|
||||
|
||||
# The works as follows:
|
||||
# The tank drives around in a circle of radius r, which is some
|
||||
# offset on a line perpendicular to the tank. The distance it travels
|
||||
# around the circle varies with the speed of each tread, and is
|
||||
# such that each side of the tank moves an equal angle around the
|
||||
# circle.
|
||||
L = self.SPEED * lSpeed/100.0
|
||||
R = self.SPEED * rSpeed/100.0
|
||||
friction = .75 * abs(L-R)/(2.0*self.SPEED)
|
||||
L = L * (1 - friction)
|
||||
R = R * (1 - friction)
|
||||
|
||||
# Si is the speed of the tread on the inside of the turn,
|
||||
# So is the speed on the outside of the turn.
|
||||
# dir is to note the direction of rotation.
|
||||
if abs(L) > abs(R):
|
||||
Si = R; So = L
|
||||
dir = 1
|
||||
else:
|
||||
Si = L; So = R
|
||||
dir = -1
|
||||
|
||||
# The width of the tank...
|
||||
w = self.RADIUS * 2
|
||||
|
||||
# This is the angle that will determine the circle the tank travels
|
||||
# around.
|
||||
# theta = math.atan((So - Sl)/w)
|
||||
# This is the distance from the outer tread to the center of the
|
||||
# circle formed by it's movement.
|
||||
r = w*So/(So - Si)
|
||||
|
||||
# The fraction of the circle traveled is equal to the speed of
|
||||
# the outer tread over the circumference of the circle.
|
||||
# Ft = So/(2*pi*r)
|
||||
# The angle traveled is equal to the Fraction traveled * 2 * pi
|
||||
# This reduces to a simple: So/r
|
||||
# We multiply it by dir to adjust for the direction of rotation
|
||||
theta = So/r * dir
|
||||
|
||||
# These are the offsets from the center of the circle, given that
|
||||
# the tank is turned in some direction. The tank is facing
|
||||
# perpendicular to the circle
|
||||
# So far everything has been relative to the outer tread. At this
|
||||
# point, however, we need to move relative to the center of the
|
||||
# tank. Hence the adjustment in r.
|
||||
x = -math.cos( self._angle + math.pi/2*dir ) * (r - w/2.0)
|
||||
y = -math.sin( self._angle + math.pi/2*dir ) * (r - w/2.0)
|
||||
|
||||
# Now we just rotate the tank's position around the center of the
|
||||
# circle to get the change in coordinates.
|
||||
mx, my = gm.rotatePoint((x,y), theta)
|
||||
mx = mx - x
|
||||
my = my - y
|
||||
|
||||
# Finally, we shift the tank relative to the playing field, and
|
||||
# rotate it by theta.
|
||||
self._reposition((mx, my), theta)
|
||||
|
||||
def _reposition(self, move, angleChange):
|
||||
"""Move the tank by x,y = move, and change it's angle by angle.
|
||||
I assume the tanks move slower than the boardSize."""
|
||||
|
||||
x = self.pos[0] + move[0]
|
||||
y = self.pos[1] + move[1]
|
||||
self._angle = self._angle + angleChange
|
||||
|
||||
if x < 0:
|
||||
x = self._limits[0] + x
|
||||
elif x > self._limits[0]:
|
||||
x = x - self._limits[0]
|
||||
|
||||
if y < 0:
|
||||
y = self._limits[1] + y
|
||||
elif y > self._limits[1]:
|
||||
y = y - self._limits[1]
|
||||
|
||||
self.pos = round(x), round(y)
|
||||
|
||||
while self._angle < 0:
|
||||
self._angle = self._angle + math.pi * 2
|
||||
|
||||
while self._angle > math.pi * 2:
|
||||
self._angle = self._angle - math.pi * 2
|
||||
|
||||
def draw(self, f):
|
||||
"""Output this tank's state as JSON.
|
||||
|
||||
[color, x, y, angle, turret_angle, led, fired]
|
||||
|
||||
"""
|
||||
|
||||
f.write(' [')
|
||||
f.write(str(int(self.isDead)));
|
||||
f.write(',')
|
||||
f.write(repr(self.color))
|
||||
f.write(',')
|
||||
f.write('%d' % self.pos[0])
|
||||
f.write(',')
|
||||
f.write('%d' % self.pos[1])
|
||||
f.write(',')
|
||||
f.write('%.2f' % self._angle)
|
||||
f.write(',')
|
||||
f.write('%.2f' % self._tAngle)
|
||||
f.write(',')
|
||||
f.write(str(int(self.led)))
|
||||
f.write(',')
|
||||
f.write('%d' % (self._fired and self.FIRE_RANGE) or 0)
|
||||
if not self.isDead:
|
||||
f.write(',[')
|
||||
for i in range(len(self._sensors)):
|
||||
dist, sensorAngle, width, tSens = self._sensors[i]
|
||||
|
||||
# If the angle is tied to the turret, add that.
|
||||
if tSens:
|
||||
sensorAngle = sensorAngle + self._tAngle
|
||||
|
||||
f.write('[')
|
||||
f.write(str(int(dist)))
|
||||
f.write(',')
|
||||
f.write('%.2f' % (sensorAngle - width/2));
|
||||
f.write(',')
|
||||
f.write('%.2f' % (sensorAngle + width/2));
|
||||
f.write(',')
|
||||
f.write(str(int(self._sensorState[i])))
|
||||
f.write('],')
|
||||
f.write(']')
|
||||
|
||||
f.write('],\n')
|
|
@ -1,126 +0,0 @@
|
|||
"""Define new action Functions here. They should inherit from the
|
||||
Function.Function class. To make an action usable, add it to the
|
||||
actions dictionary at the end of this file."""
|
||||
|
||||
import Function
|
||||
|
||||
class Move(Function.Function):
|
||||
"""move(left tread speed, right tread speed)
|
||||
Set the speeds for the tanks right and left treads. The speeds should
|
||||
be a number (percent power) between -100 and 100."""
|
||||
|
||||
def __init__(self, left, right):
|
||||
self._checkRange(left, 'left tread speed', min=-100)
|
||||
self._checkRange(right, 'right tread speed', min=-100)
|
||||
|
||||
self._left = left
|
||||
self._right = right
|
||||
|
||||
def __call__(self, tank):
|
||||
tank.setMove(self._left, self._right)
|
||||
|
||||
class TurretCounterClockwise(Function.Function):
|
||||
"""turretccw([percent speed])
|
||||
Rotate the turret counter clockwise as a percentage of the max speed."""
|
||||
def __init__(self, speed=100):
|
||||
self._checkRange(speed, 'turret percent speed')
|
||||
self._speed = speed/100.0
|
||||
def __call__(self, tank):
|
||||
tank.setTurretAngle(tank._tAngle - tank.TURRET_TURN_RATE*self._speed)
|
||||
|
||||
class TurretClockwise(Function.Function):
|
||||
"""turretcw([percent speed])
|
||||
Rotate the turret clockwise at a rate preportional to speed."""
|
||||
|
||||
def __init__(self, speed=100):
|
||||
self._checkRange(speed, 'turret percent speed')
|
||||
self._speed = speed/100.0
|
||||
def __call__(self, tank):
|
||||
tank.setTurretAngle(tank._tAngle + tank.TURRET_TURN_RATE*self._speed)
|
||||
|
||||
class TurretSet(Function.Function):
|
||||
"""turretset([angle])
|
||||
Set the turret to the given angle, in degrees, relative to the front of
|
||||
the tank. Angles increase counterclockwise.
|
||||
The angle can be left out; in that case, this locks the turret
|
||||
to it's current position."""
|
||||
|
||||
def __init__(self, angle=None):
|
||||
# Convert the angle to radians
|
||||
if angle is not None:
|
||||
angle = self._convertAngle(angle, 'turret angle')
|
||||
|
||||
self._angle = angle
|
||||
|
||||
def __call__(self, tank):
|
||||
tank.setTurretAngle(self._angle)
|
||||
|
||||
class Fire(Function.Function):
|
||||
"""fire()
|
||||
Attempt to fire the tanks laser cannon."""
|
||||
|
||||
def __call__(self, tank):
|
||||
tank.setFire()
|
||||
|
||||
class SetToggle(Function.Function):
|
||||
"""settoggle(key, state)
|
||||
Set toggle 'key' to 'state'.
|
||||
"""
|
||||
def __init__(self, key, state):
|
||||
self._key = key
|
||||
self._state = state
|
||||
def __call__(self, tank):
|
||||
tank.toggles[self._key] = self._state
|
||||
|
||||
class Toggle(Function.Function):
|
||||
"""toggle(key)
|
||||
Toggle the value of toggle 'key'.
|
||||
"""
|
||||
def __init__(self, key):
|
||||
self._key = key
|
||||
def __call__(self, tank):
|
||||
try:
|
||||
tank.toggles[self._key] = not tank.toggles[self._key]
|
||||
except IndexError:
|
||||
raise IndexError('Invalid toggle: %d' % self._key)
|
||||
|
||||
class LED(Function.Function):
|
||||
"""led(state)
|
||||
Set the tanks LED to state (true is on, false is off).
|
||||
The led is a light that appears behind the tanks turret.
|
||||
It remains on for a single turn."""
|
||||
def __init__(self, state=1):
|
||||
self._state = state
|
||||
def __call__(self, tank):
|
||||
tank.led = self._state
|
||||
|
||||
class StartTimer(Function.Function):
|
||||
"""starttimer(#)
|
||||
Start (and reset) the given timer, but only if it is inactive.
|
||||
"""
|
||||
def __init__(self, key):
|
||||
self._key = key
|
||||
def __call__(self, tank):
|
||||
tank.resetTimer(key)
|
||||
|
||||
class ClearTimer(Function.Function):
|
||||
"""cleartimer(#)
|
||||
Clear the given timer such that it is no longer active (inactive timers
|
||||
are always False)."""
|
||||
def __init__(self, key):
|
||||
self._key = key
|
||||
def __call__(self, tank):
|
||||
tank.clearTimer(self._key)
|
||||
|
||||
### When adding names to this dict, make sure they are lower case and alpha
|
||||
### numeric.
|
||||
actions = {'move': Move,
|
||||
'turretccw': TurretCounterClockwise,
|
||||
'turretcw': TurretClockwise,
|
||||
'turretset': TurretSet,
|
||||
'fire': Fire,
|
||||
'settoggle': SetToggle,
|
||||
'toggle': Toggle,
|
||||
'led': LED,
|
||||
'starttimer': StartTimer,
|
||||
'cleartimer': ClearTimer}
|
|
@ -1,126 +0,0 @@
|
|||
"""Define new condition functions here. Add it to the conditions dictionary
|
||||
at the end to make it usable by Program.Program. These should inherit from
|
||||
Function.Function."""
|
||||
|
||||
import Function
|
||||
import math
|
||||
import random
|
||||
|
||||
class Sense(Function.Function):
|
||||
"""sense(#, [invert])
|
||||
Takes a Sensor number as an argument.
|
||||
Returns True if the given sensor is currently activated, False otherwise.
|
||||
If the option argument invert is set to true then logic is inverted,
|
||||
and then sensor returns True when it is NOT activated, and False when
|
||||
it is. Invert is false by default.
|
||||
"""
|
||||
|
||||
def __init__(self, sensor, invert=0):
|
||||
self._sensor = sensor
|
||||
self._invert = invert
|
||||
|
||||
def __call__(self, tank):
|
||||
state = tank.getSensorState(self._sensor)
|
||||
if self._invert:
|
||||
return not state
|
||||
else:
|
||||
return state
|
||||
|
||||
class Toggle(Function.Function):
|
||||
"""toggle(#)
|
||||
Returns True if the given toggle is set, False otherwise. """
|
||||
def __init__(self, toggle):
|
||||
self._toggle = toggle
|
||||
def __call__(self, tank):
|
||||
return tank.toggles[toggle]
|
||||
|
||||
class TimerCheck(Function.Function):
|
||||
"""timer(#, [invert])
|
||||
Checks the state of timer # 'key'. Returns True if time has run out.
|
||||
If invert is given (and true), then True is returned if the timer has
|
||||
yet to expire.
|
||||
"""
|
||||
def __init__(self, key, invert=0):
|
||||
self._key = key
|
||||
self._invert = invert
|
||||
def __call__(self, tank):
|
||||
state = tank.checkTimer(self._key)
|
||||
if invert:
|
||||
return not state
|
||||
else:
|
||||
return state
|
||||
|
||||
class Random(Function.Function):
|
||||
"""random(n,m)
|
||||
Takes two arguments, n and m. Generates a random number between 1
|
||||
and m (inclusive) each time it's checked. If the random number is less
|
||||
than or equal
|
||||
to n, then the condition returns True. Returns False otherwise."""
|
||||
|
||||
def __init__(self, n, m):
|
||||
self._n = n
|
||||
self._m = m
|
||||
|
||||
def __call__(self, tank):
|
||||
if random.randint(1,self._m) <= self._n:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
class Sin(Function.Function):
|
||||
"""sin(T)
|
||||
A sin wave of period T (in turns). Returns True when the wave is positive.
|
||||
A wave with period 1 or 2 is always False (it's 0 each turn), only
|
||||
at periods of 3 or more does this become useful."""
|
||||
|
||||
def __init__(self, T):
|
||||
self._T = T
|
||||
|
||||
def __call__(self, tank):
|
||||
turn = tank.turn
|
||||
factor = math.pi/self._T
|
||||
if math.sin(turn * factor) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
class Cos(Function.Function):
|
||||
"""cos(T)
|
||||
A cos wave with period T (in turns). Returns True when the wave is
|
||||
positive. A wave of period 1 is always True. Period 2 is True every
|
||||
other turn, etc."""
|
||||
|
||||
def __init__(self, T):
|
||||
self._T = T
|
||||
|
||||
def __call__(self, tank):
|
||||
|
||||
turn = tank.turn
|
||||
factor = math.pi/self._T
|
||||
if math.cos(turn * factor) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
class FireReady(Function.Function):
|
||||
"""fireready()
|
||||
True when the tank can fire."""
|
||||
def __call__(self, tank):
|
||||
return tank.fireReady()
|
||||
|
||||
class FireNotReady(Function.Function):
|
||||
"""firenotready()
|
||||
True when the tank can not fire."""
|
||||
def __call__(self, tank):
|
||||
return not tank.fireReady()
|
||||
|
||||
### When adding names to this dict, make sure they are lower case and alpha
|
||||
### numeric.
|
||||
conditions = {'sense': Sense,
|
||||
'random': Random,
|
||||
'toggle': Toggle,
|
||||
'sin': Sin,
|
||||
'cos': Cos,
|
||||
'fireready': FireReady,
|
||||
'firenotready': FireNotReady,
|
||||
'timer': TimerCheck }
|
|
@ -1,26 +0,0 @@
|
|||
import xml.sax.saxutils
|
||||
|
||||
def mkDocTable(objects):
|
||||
objects.sort(lambda o1, o2: cmp(o1.__doc__, o2.__doc__))
|
||||
|
||||
for object in objects:
|
||||
if object.__doc__ is None:
|
||||
print '<table><tr><th>%s<tr><td colspan=2>Bad object</table>' % \
|
||||
xml.sax.saxutils.escape(str(object))
|
||||
continue
|
||||
text = object.__doc__
|
||||
lines = text.split('\n')
|
||||
head = lines[0].strip()
|
||||
head = xml.sax.saxutils.escape(head)
|
||||
|
||||
body = []
|
||||
for line in lines[1:]:
|
||||
line = line.strip() #xml.sax.saxutils.escape( line.strip() )
|
||||
line = line.replace('.', '.<BR>')
|
||||
body.append(line)
|
||||
|
||||
body = '\n'.join(body)
|
||||
print '<DL><DT><DIV class="tab">%s</DIV></DT><DD>%s</DD></DL>' % (head, body)
|
||||
#print '<tr><th>%s<th>Intentionally blank<th><tr><td colspan=3>%s' % (head, body)
|
||||
|
||||
|
|
@ -1,72 +0,0 @@
|
|||
"""Each of these classes provides a function for configuring a tank.
|
||||
They should inherit from Function.Function.
|
||||
To make one available to the tank programmer, add it to the dictionary at
|
||||
the end of this file."""
|
||||
|
||||
import Function
|
||||
|
||||
class AddSensor(Function.Function):
|
||||
"""addsensor(range, angle, width, [turretAttached])
|
||||
Add a new sensor to the tank. Sensors are an arc (pie slice) centered on
|
||||
the tank that detect other tanks within their sweep.
|
||||
A sensor is 'on' if another tank is within this arc.
|
||||
Sensors are numbered, starting at 0, in the order they are added.
|
||||
<p>
|
||||
range - The range of the sensor, as a percent of the tanks max range.
|
||||
angle - The angle of the center of the sensor, in degrees.
|
||||
width - The width of the sensor, in percent (100 is a full circle).
|
||||
turretAttached - Normally, the angle is relative to the front of the
|
||||
tank. When this is set, the angle is relative to the current turret
|
||||
direction.
|
||||
<p>
|
||||
Sensors are drawn for each tank, but not in the way you might expect.
|
||||
Instead of drawing a pie slice (the actual shap of the sensor), an arc with
|
||||
the end points connected by a line is drawn. Sensors with 0 width don't show
|
||||
up, but still work.
|
||||
"""
|
||||
|
||||
def __init__(self, range, angle, width, turretAttached=False):
|
||||
|
||||
self._checkRange(range, 'sensor range')
|
||||
|
||||
self._range = range / 100.0
|
||||
self._width = self._convertAngle(width, 'sensor width')
|
||||
self._angle = self._convertAngle(angle, 'sensor angle')
|
||||
self._turretAttached = turretAttached
|
||||
|
||||
def __call__(self, tank):
|
||||
tank.addSensor(self._range, self._angle, self._width,
|
||||
self._turretAttached)
|
||||
|
||||
class AddToggle(Function.Function):
|
||||
"""addtoggle([state])
|
||||
Add a toggle to the tank. The state of the toggle defaults to 0 (False).
|
||||
These essentially act as a single bit of memory.
|
||||
Use the toggle() condition to check its state and the settoggle, cleartoggle,
|
||||
and toggle actions to change the state. Toggles are named numerically,
|
||||
starting at 0.
|
||||
"""
|
||||
def __init__(self, state=0):
|
||||
self._state = state
|
||||
|
||||
def __call__(self, tank):
|
||||
if len(tank.toggles) >= tank.SENSOR_LIMIT:
|
||||
raise ValueError('You can not have more than 10 toggles.')
|
||||
|
||||
tank.toggles.append(self._state)
|
||||
|
||||
class AddTimer(Function.Function):
|
||||
"""addtimer(timeout)
|
||||
Add a new timer (they're numbered in the order added, starting from 0),
|
||||
with the given timeout. The timeout is in number of turns. The timer
|
||||
is created in inactive mode. You'll need to do a starttimer() action
|
||||
to reset and start the timer. When the timer expires, the timer()
|
||||
condition will begin to return True."""
|
||||
def __init__(self, timeout):
|
||||
self._timeout = timeout
|
||||
def __call__(self, tank):
|
||||
tank.addTimer(timeout)
|
||||
|
||||
setup = {'addsensor': AddSensor,
|
||||
'addtoggle': AddToggle,
|
||||
'addtimer': AddTimer}
|
|
@ -1,5 +1,7 @@
|
|||
import math
|
||||
|
||||
pi2 = math.pi * 2
|
||||
|
||||
def rotatePoint(point, angle):
|
||||
"""Assuming 0,0 is the center, rotate the given point around it."""
|
||||
|
||||
|
@ -120,19 +122,14 @@ center is the origin. Take into account wrapping round the limits of the board.
|
|||
r = math.sqrt(dx**2 + dy**2)
|
||||
theta = math.acos(dx/r)
|
||||
if dy < 0:
|
||||
theta = 2*math.pi - theta
|
||||
theta = pi2 - theta
|
||||
|
||||
return r, theta
|
||||
|
||||
def reduceAngle(angle):
|
||||
"""Reduce the angle such that it is in 0 <= angle < 2pi"""
|
||||
|
||||
while angle >= math.pi*2:
|
||||
angle = angle - math.pi*2
|
||||
while angle < 0:
|
||||
angle = angle + math.pi*2
|
||||
|
||||
return angle
|
||||
return angle % pi2
|
||||
|
||||
def angleDiff(angle1, angle2):
|
||||
"""Returns the difference between the two angles. They are assumed
|
||||
|
@ -142,17 +139,7 @@ to be in radians, and must be in the range 0 <= angle < 2*pi.
|
|||
is negative if angle2 leads angle1 (clockwise)..
|
||||
"""
|
||||
|
||||
for angle in angle1, angle2:
|
||||
assert angle < 2*math.pi and angle >= 0, \
|
||||
'angleDiff: bad angle %s' % angle
|
||||
|
||||
diff = angle2 - angle1
|
||||
if diff > math.pi:
|
||||
diff = diff - 2*math.pi
|
||||
elif diff < -math.pi:
|
||||
diff = diff + 2*math.pi
|
||||
|
||||
return diff
|
||||
return (angle2 - angle1) % pi2
|
||||
|
||||
def getDist(point1, point2):
|
||||
"""Returns the distance between point1 and point2."""
|
||||
|
|
Loading…
Reference in New Issue