5v version before synchrotron improvements

This commit is contained in:
Neale Pickett 2016-09-25 16:57:35 -06:00
parent 021c9ffb26
commit e87a3f66b4
1 changed files with 216 additions and 155 deletions

View File

@ -1,142 +1,189 @@
// Proton Pack with NeoPixels
// Boy howdy do these make everything easy
#include <SPI.h>
#include <Wire.h>
#include "Adafruit_LEDBackpack.h"
#include "Adafruit_GFX.h"
#include <SD.h>
#include <Adafruit_NeoPixel.h>
#include <Adafruit_VS1053.h>
#include <Adafruit_LEDBackpack.h>
#include <Adafruit_GFX.h>
#define LTCH 8
#define RED 9
#define GREEN 10
#define BLUE 11
#define DEBUG 13
#define TRIGGER 4
#define DEBUG 12
// Music Player object
#define SHIELD_RESET -1 // VS1053 reset pin (unused!)
#define SHIELD_CS 7 // VS1053 chip select pin (output)
#define SHIELD_DCS 6 // VS1053 Data/command select pin (output)
#define CARDCS 4 // Card chip select
#define DREQ 1 // VS1053 Data request (an interrupt pin)
Adafruit_VS1053_FilePlayer musicPlayer = Adafruit_VS1053_FilePlayer(SHIELD_RESET, SHIELD_CS, SHIELD_DCS, DREQ, CARDCS);
// NeoPixel: so cool
#define SYNCHROTRON_PIN 5
#define SYNCHROTRON_PIXELS 24 // I'm using the middle-sized NeoPixel ring
Adafruit_NeoPixel synchrotron = Adafruit_NeoPixel(SYNCHROTRON_PIXELS, SYNCHROTRON_PIN, NEO_GRB | NEO_KHZ800);
// 7-segment displays
Adafruit_7segment disp1 = Adafruit_7segment();
// Inputs
#define TRIGGER 8
// Nominal brightness
#define brightness 64
const byte powerColor[3] = {0xff, 0, 0};
const byte dispBright = 10;
unsigned long jiffies = 0;
Adafruit_7segment disp1;
void rgbPWM(byte r, byte g, byte b) {
analogWrite(RED, 0xff - r);
analogWrite(GREEN, 0xff - g);
analogWrite(BLUE, 0xff - b);
// XXX: do this
}
void rgb(byte r, byte g, byte b) {
SPI.transfer(b);
SPI.transfer(g);
SPI.transfer(r);
digitalWrite(LTCH, HIGH);
digitalWrite(LTCH, LOW);
for (int i = 0; i < SYNCHROTRON_PIXELS; i += 1) {
synchrotron.setPixelColor(i, synchrotron.Color(r, g, b));
}
synchrotron.show();
}
void setup() {
randomSeed(analogRead(12));
SPI.begin();
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV2);
SPI.setBitOrder(LSBFIRST);
disp1 = Adafruit_7segment();
disp1.begin(0x70);
pinMode(LTCH, OUTPUT);
pinMode(RED, OUTPUT);
pinMode(GREEN, OUTPUT);
pinMode(BLUE, OUTPUT);
pinMode(DEBUG, OUTPUT);
// synchrotron
synchrotron.begin();
synchrotron.show(); // Turn everything off
// inputs
pinMode(TRIGGER, INPUT_PULLUP);
// music player, this sets up SPI for us
SD.begin(CARDCS);
musicPlayer.begin();
musicPlayer.setVolume(20, 20); // lower = louder
// We don't set useInterrupt, since we do our own polling for smoother operations
// 7-segment displays.
// These also use SPI, in i2c mode.
// Since the music player has a CS line,
// and we're unlikely to send the right i2c command to the 7-segment to wake it up,
// it's okay to use the same SPI bus for both.
disp1.begin(0x70);
}
// Cycle through colors, one spoke at a time.
// Since we can only control brightness by color component for all spokes,
// we can't do a fancier trick per-spoke.
// But this one isn't that bad, really.
bool doStartup() {
static int count = 0;
static byte cur[3] = {0, 0, 0};
// Run this every 12 jiffies
if (jiffies % 6 != 0) {
return false;
// Synchrotron needs to "spin up"
// We start slow, with red, then work our way through the rainbow to blue
bool charge() {
static uint32_t count = 0;
static int every = 9;
static int reps = 0;
uint32_t color_count;
byte r, g, b;
static int whichout = 0;
// Play startup sound at the start
if (count == 0) {
musicPlayer.startPlayingFile("track001.mp3");
}
int weight = 0;
int pos = count % 8;
int color = 6 - (count / 8);
// Make the animation play out a little more slowly,
// while still allowing a nice fast rotation
color_count = count / 4;
// Give the illusion of something spinning up
if (every == 1) {
whichout = (whichout + 1) % SYNCHROTRON_PIXELS;
} else if (count % every == 0) {
whichout = (whichout + 1) % SYNCHROTRON_PIXELS;
reps += 1;
if (reps == 20 - every) {
every -= 1;
reps = 0;
}
}
// Start at blue, go through hue to red
switch (color_count / brightness) {
case 0:
r = color_count % brightness;
g = 0;
b = 0;
break;
case 1:
r = brightness - (color_count % brightness) - 1;
g = color_count % brightness;
b = 0;
break;
case 2:
r = 0;
g = brightness - (color_count % brightness) - 1;
b = color_count % brightness;
break;
default:
rgb(brightness, 0, 0);
return true;
}
// Set 'em up pixels
for (int i = 0; i < SYNCHROTRON_PIXELS; i += 1) {
if (whichout == i) {
synchrotron.setPixelColor(i, 0);
} else if ((whichout == (i+1) % SYNCHROTRON_PIXELS) || ((whichout+1) % SYNCHROTRON_PIXELS == i)) {
synchrotron.setPixelColor(i, synchrotron.Color(r/4, g/4, b/4));
} else {
synchrotron.setPixelColor(i, synchrotron.Color(r, g, b));
}
}
synchrotron.show();
disp1.clear();
disp1.printNumber(0xb00, HEX);
disp1.setBrightness(dispBright);
disp1.writeDisplay();
count += 1;
for (int i = 0; i < 3; i += 1) {
int bit = (color & (1 << i))?1:0;
weight += bit;
// Shift the current color in from the LSB to the MSB
cur[i] = (cur[i] << 1) | bit;
}
rgb(cur[0], cur[1], cur[2]);
rgbPWM(32 * weight, 32 * weight, 32 * weight);
for (int i = 0; i < 5; i += 1) {
disp1.writeDigitRaw(i, random(256));
}
disp1.setBrightness(random(16));
disp1.writeDisplay();
if ((color == 1) && (pos == 7)) {
rgb(powerColor[0], powerColor[1], powerColor[2]);
disp1.clear();
disp1.printNumber(0xb00, HEX);
disp1.setBrightness(dispBright);
disp1.writeDisplay();
return true;
}
return false;
}
// Pulse to an extreme, then back
bool pulse(byte initial, int pct) {
static int prev = 0;
static int state = 0;
static int val = 0;
int cur = (pct << 8) | initial;
int newval = initial;
// Reset if called with new values
if (prev != cur) {
state = 0;
prev = cur;
// Do a sort of mirrored KITT effect
bool kitt() {
static int count = 0;
int out = count % (SYNCHROTRON_PIXELS/2);
if (jiffies % 12 != 0) {
return false;
}
switch (state) {
case 0:
state = 1;
val = initial;
break;
case 1:
val = (val * pct) / 100;
if ((val <= 1) || (val >= 255)) {
state = 2;
for (int i = 0; i < SYNCHROTRON_PIXELS; i += 1) {
int pixnum = (SYNCHROTRON_PIXELS/2) - abs(i - (SYNCHROTRON_PIXELS / 2));
int intensity;
if (count < SYNCHROTRON_PIXELS/2) {
intensity = 100;
if (pixnum == out) {
intensity = 50;
} else if (pixnum < out) {
intensity = 10;
}
} else {
intensity = 10;
if (pixnum == out) {
intensity = 50;
} else if (pixnum < out) {
intensity = 100;
}
}
break;
case 2:
// discrete exponentiation, woo woo
while ((newval * pct) / 100 != val) {
newval = (newval * pct) / 100;
}
val = newval;
if (val == initial) {
state = 3;
}
break;
case 3:
state = 0;
val = 0;
synchrotron.setPixelColor(i, synchrotron.Color(brightness * intensity / 100, 0, 0));
}
synchrotron.show();
count += 1;
if (count > SYNCHROTRON_PIXELS) {
rgb(brightness, 0, 0);
count = 0;
return true;
}
newval = min(val, 255);
rgbPWM(newval, newval, newval);
return false;
}
@ -144,17 +191,16 @@ bool glitch(int r, int g, int b) {
static int state = 0;
int i;
if (jiffies % 5 != 0) {
if (jiffies % 10 != 0) {
return false;
}
switch (state) {
case 0:
// pick a random bit and clear it
i = random(8);
r &= ~(1 << i);
g &= ~(1 << i);
b &= ~(1 << i);
// glitch to a random color
r = random(brightness / 6);
g = random(brightness / 6);
b = random(brightness / 6);
rgb(r, g, b);
state = 1;
break;
@ -169,22 +215,26 @@ bool glitch(int r, int g, int b) {
}
void fire() {
rgb(0, 0xff, 0xff);
pulse(32, 160);
rgb(0, brightness, brightness);
}
void fireDone() {
rgb(powerColor[0], powerColor[1], powerColor[2]);
rgbPWM(64, 64, 64);
rgb(brightness, 0, 0);
}
void flashDebug() {
if (jiffies % 50 == 0) {
int val = digitalRead(DEBUG);
digitalWrite(DEBUG, (val==HIGH)?LOW:HIGH);
}
}
int doPowered() {
void tick() {
static int doing = 0;
static float val1 = 584.2;
static bool firing = false;
bool trigger;
trigger = (digitalRead(TRIGGER) == LOW);
if (trigger) {
@ -194,26 +244,24 @@ int doPowered() {
switch (doing) {
case 0: // doing nothing
if (jiffies % 200 == 0) {
doing = 1; // pulse
if (jiffies % 300 == 0) {
doing = 1; // KITT
} else if (random(350) == 0) {
doing = 2; // surge
} else if (random(200) == 0) {
} else if (random(400) == 0) {
doing = 3; // glitch
}
break;
case 1:
if (pulse(64, 80)) {
if (kitt()) {
doing = 0;
}
break;
case 2:
if (pulse(64, 120)) {
doing = 0;
}
doing = 0;
break;
case 3:
if (glitch(powerColor[0], powerColor[1], powerColor[2])) {
if (glitch(brightness, 0, 0)) {
doing = 0;
}
break;
@ -248,38 +296,51 @@ int doPowered() {
disp1.print(someNumber);
disp1.writeDisplay();
}
return 1;
}
void flashDebug() {
if (jiffies % 50 == 0) {
int val = digitalRead(DEBUG);
digitalWrite(DEBUG, (val==HIGH)?LOW:HIGH);
}
flashDebug();
}
void loop() {
static int state = 0;
// 6 seems to be about what my overly-critical brain needs to buffer out
// any music player delays so that they're unnoticeable
unsigned long new_jiffies = millis() / 6;
// state machine
// The delay is *outside* the state machine, you'll notice.
// So don't call sleep in your state function.
switch (state) {
case 0:
if (doStartup()) {
state = 1;
}
break;
case 1:
state = doPowered();
break;
if (new_jiffies > jiffies) {
jiffies = new_jiffies;
tick();
}
flashDebug();
delay(12);
jiffies += 1;
/* Cleverness ensues
*
* The Adafruit library is written to let you go off and do whatever you need,
* hooking into an interrupt to sort of act like a multitasking operating system,
* interrupting your program periodically.
*
* That's smart, since it makes it easy to use,
* but we want this to be responsive, and can't handle something barging in and taking up lots of time:
* it makes things look really uneven as our display code pauses to fill the buffer.
* Fortunately, we don't have to fill the entire buffer at once, we can trickle data in.
* That's what this does.
*
* Since the entire program is polling, without ever calling delay,
* and hopefully doing what needs to be done quickly,
* we check to see if the music chip wants more data.
* If it does, we give it one chunk, and only one chunk,
* rather than filling its buffer back up completely.
*
* There is still some weirdness with this loop,
* possibly because the SPI routines are masking interrupts used to increment millis.
* But it's remarkably more fluid than the other way.
*/
if (musicPlayer.playingMusic && musicPlayer.readyForData()) {
int bytesread = musicPlayer.currentTrack.read(musicPlayer.mp3buffer, VS1053_DATABUFFERLEN);
if (bytesread == 0) {
musicPlayer.playingMusic = false;
musicPlayer.currentTrack.close();
} else {
musicPlayer.playData(musicPlayer.mp3buffer, bytesread);
}
}
}