mirror of https://github.com/nealey/proton
5v version before synchrotron improvements
This commit is contained in:
parent
021c9ffb26
commit
e87a3f66b4
339
ProtonPack.ino
339
ProtonPack.ino
|
@ -1,142 +1,189 @@
|
|||
// Proton Pack with NeoPixels
|
||||
// Boy howdy do these make everything easy
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Wire.h>
|
||||
#include "Adafruit_LEDBackpack.h"
|
||||
#include "Adafruit_GFX.h"
|
||||
#include <SD.h>
|
||||
#include <Adafruit_NeoPixel.h>
|
||||
#include <Adafruit_VS1053.h>
|
||||
#include <Adafruit_LEDBackpack.h>
|
||||
#include <Adafruit_GFX.h>
|
||||
|
||||
#define LTCH 8
|
||||
#define RED 9
|
||||
#define GREEN 10
|
||||
#define BLUE 11
|
||||
#define DEBUG 13
|
||||
#define TRIGGER 4
|
||||
#define DEBUG 12
|
||||
|
||||
// Music Player object
|
||||
#define SHIELD_RESET -1 // VS1053 reset pin (unused!)
|
||||
#define SHIELD_CS 7 // VS1053 chip select pin (output)
|
||||
#define SHIELD_DCS 6 // VS1053 Data/command select pin (output)
|
||||
#define CARDCS 4 // Card chip select
|
||||
#define DREQ 1 // VS1053 Data request (an interrupt pin)
|
||||
Adafruit_VS1053_FilePlayer musicPlayer = Adafruit_VS1053_FilePlayer(SHIELD_RESET, SHIELD_CS, SHIELD_DCS, DREQ, CARDCS);
|
||||
|
||||
// NeoPixel: so cool
|
||||
#define SYNCHROTRON_PIN 5
|
||||
#define SYNCHROTRON_PIXELS 24 // I'm using the middle-sized NeoPixel ring
|
||||
Adafruit_NeoPixel synchrotron = Adafruit_NeoPixel(SYNCHROTRON_PIXELS, SYNCHROTRON_PIN, NEO_GRB | NEO_KHZ800);
|
||||
|
||||
// 7-segment displays
|
||||
Adafruit_7segment disp1 = Adafruit_7segment();
|
||||
|
||||
// Inputs
|
||||
#define TRIGGER 8
|
||||
|
||||
// Nominal brightness
|
||||
#define brightness 64
|
||||
|
||||
const byte powerColor[3] = {0xff, 0, 0};
|
||||
const byte dispBright = 10;
|
||||
unsigned long jiffies = 0;
|
||||
Adafruit_7segment disp1;
|
||||
|
||||
void rgbPWM(byte r, byte g, byte b) {
|
||||
analogWrite(RED, 0xff - r);
|
||||
analogWrite(GREEN, 0xff - g);
|
||||
analogWrite(BLUE, 0xff - b);
|
||||
// XXX: do this
|
||||
}
|
||||
|
||||
void rgb(byte r, byte g, byte b) {
|
||||
SPI.transfer(b);
|
||||
SPI.transfer(g);
|
||||
SPI.transfer(r);
|
||||
digitalWrite(LTCH, HIGH);
|
||||
digitalWrite(LTCH, LOW);
|
||||
for (int i = 0; i < SYNCHROTRON_PIXELS; i += 1) {
|
||||
synchrotron.setPixelColor(i, synchrotron.Color(r, g, b));
|
||||
}
|
||||
synchrotron.show();
|
||||
}
|
||||
|
||||
void setup() {
|
||||
randomSeed(analogRead(12));
|
||||
|
||||
SPI.begin();
|
||||
SPI.setDataMode(SPI_MODE0);
|
||||
SPI.setClockDivider(SPI_CLOCK_DIV2);
|
||||
SPI.setBitOrder(LSBFIRST);
|
||||
// synchrotron
|
||||
synchrotron.begin();
|
||||
synchrotron.show(); // Turn everything off
|
||||
|
||||
disp1 = Adafruit_7segment();
|
||||
disp1.begin(0x70);
|
||||
|
||||
pinMode(LTCH, OUTPUT);
|
||||
pinMode(RED, OUTPUT);
|
||||
pinMode(GREEN, OUTPUT);
|
||||
pinMode(BLUE, OUTPUT);
|
||||
pinMode(DEBUG, OUTPUT);
|
||||
// inputs
|
||||
pinMode(TRIGGER, INPUT_PULLUP);
|
||||
|
||||
// music player, this sets up SPI for us
|
||||
SD.begin(CARDCS);
|
||||
musicPlayer.begin();
|
||||
musicPlayer.setVolume(20, 20); // lower = louder
|
||||
// We don't set useInterrupt, since we do our own polling for smoother operations
|
||||
|
||||
// 7-segment displays.
|
||||
// These also use SPI, in i2c mode.
|
||||
// Since the music player has a CS line,
|
||||
// and we're unlikely to send the right i2c command to the 7-segment to wake it up,
|
||||
// it's okay to use the same SPI bus for both.
|
||||
disp1.begin(0x70);
|
||||
}
|
||||
|
||||
// Cycle through colors, one spoke at a time.
|
||||
// Since we can only control brightness by color component for all spokes,
|
||||
// we can't do a fancier trick per-spoke.
|
||||
// But this one isn't that bad, really.
|
||||
bool doStartup() {
|
||||
static int count = 0;
|
||||
static byte cur[3] = {0, 0, 0};
|
||||
// Synchrotron needs to "spin up"
|
||||
// We start slow, with red, then work our way through the rainbow to blue
|
||||
bool charge() {
|
||||
static uint32_t count = 0;
|
||||
static int every = 9;
|
||||
static int reps = 0;
|
||||
uint32_t color_count;
|
||||
byte r, g, b;
|
||||
static int whichout = 0;
|
||||
|
||||
// Run this every 12 jiffies
|
||||
if (jiffies % 6 != 0) {
|
||||
return false;
|
||||
// Play startup sound at the start
|
||||
if (count == 0) {
|
||||
musicPlayer.startPlayingFile("track001.mp3");
|
||||
}
|
||||
|
||||
int weight = 0;
|
||||
int pos = count % 8;
|
||||
int color = 6 - (count / 8);
|
||||
// Make the animation play out a little more slowly,
|
||||
// while still allowing a nice fast rotation
|
||||
color_count = count / 4;
|
||||
|
||||
count += 1;
|
||||
|
||||
for (int i = 0; i < 3; i += 1) {
|
||||
int bit = (color & (1 << i))?1:0;
|
||||
weight += bit;
|
||||
// Shift the current color in from the LSB to the MSB
|
||||
cur[i] = (cur[i] << 1) | bit;
|
||||
// Give the illusion of something spinning up
|
||||
if (every == 1) {
|
||||
whichout = (whichout + 1) % SYNCHROTRON_PIXELS;
|
||||
} else if (count % every == 0) {
|
||||
whichout = (whichout + 1) % SYNCHROTRON_PIXELS;
|
||||
reps += 1;
|
||||
if (reps == 20 - every) {
|
||||
every -= 1;
|
||||
reps = 0;
|
||||
}
|
||||
rgb(cur[0], cur[1], cur[2]);
|
||||
rgbPWM(32 * weight, 32 * weight, 32 * weight);
|
||||
|
||||
for (int i = 0; i < 5; i += 1) {
|
||||
disp1.writeDigitRaw(i, random(256));
|
||||
}
|
||||
disp1.setBrightness(random(16));
|
||||
disp1.writeDisplay();
|
||||
|
||||
if ((color == 1) && (pos == 7)) {
|
||||
rgb(powerColor[0], powerColor[1], powerColor[2]);
|
||||
// Start at blue, go through hue to red
|
||||
switch (color_count / brightness) {
|
||||
case 0:
|
||||
r = color_count % brightness;
|
||||
g = 0;
|
||||
b = 0;
|
||||
break;
|
||||
case 1:
|
||||
r = brightness - (color_count % brightness) - 1;
|
||||
g = color_count % brightness;
|
||||
b = 0;
|
||||
break;
|
||||
case 2:
|
||||
r = 0;
|
||||
g = brightness - (color_count % brightness) - 1;
|
||||
b = color_count % brightness;
|
||||
break;
|
||||
default:
|
||||
rgb(brightness, 0, 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Set 'em up pixels
|
||||
for (int i = 0; i < SYNCHROTRON_PIXELS; i += 1) {
|
||||
if (whichout == i) {
|
||||
synchrotron.setPixelColor(i, 0);
|
||||
} else if ((whichout == (i+1) % SYNCHROTRON_PIXELS) || ((whichout+1) % SYNCHROTRON_PIXELS == i)) {
|
||||
synchrotron.setPixelColor(i, synchrotron.Color(r/4, g/4, b/4));
|
||||
} else {
|
||||
synchrotron.setPixelColor(i, synchrotron.Color(r, g, b));
|
||||
}
|
||||
}
|
||||
synchrotron.show();
|
||||
|
||||
disp1.clear();
|
||||
disp1.printNumber(0xb00, HEX);
|
||||
disp1.setBrightness(dispBright);
|
||||
disp1.writeDisplay();
|
||||
return true;
|
||||
}
|
||||
|
||||
count += 1;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Pulse to an extreme, then back
|
||||
bool pulse(byte initial, int pct) {
|
||||
static int prev = 0;
|
||||
static int state = 0;
|
||||
static int val = 0;
|
||||
int cur = (pct << 8) | initial;
|
||||
int newval = initial;
|
||||
// Do a sort of mirrored KITT effect
|
||||
bool kitt() {
|
||||
static int count = 0;
|
||||
int out = count % (SYNCHROTRON_PIXELS/2);
|
||||
|
||||
// Reset if called with new values
|
||||
if (prev != cur) {
|
||||
state = 0;
|
||||
prev = cur;
|
||||
if (jiffies % 12 != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (state) {
|
||||
case 0:
|
||||
state = 1;
|
||||
val = initial;
|
||||
break;
|
||||
case 1:
|
||||
val = (val * pct) / 100;
|
||||
if ((val <= 1) || (val >= 255)) {
|
||||
state = 2;
|
||||
for (int i = 0; i < SYNCHROTRON_PIXELS; i += 1) {
|
||||
int pixnum = (SYNCHROTRON_PIXELS/2) - abs(i - (SYNCHROTRON_PIXELS / 2));
|
||||
int intensity;
|
||||
|
||||
if (count < SYNCHROTRON_PIXELS/2) {
|
||||
intensity = 100;
|
||||
if (pixnum == out) {
|
||||
intensity = 50;
|
||||
} else if (pixnum < out) {
|
||||
intensity = 10;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
// discrete exponentiation, woo woo
|
||||
while ((newval * pct) / 100 != val) {
|
||||
newval = (newval * pct) / 100;
|
||||
} else {
|
||||
intensity = 10;
|
||||
if (pixnum == out) {
|
||||
intensity = 50;
|
||||
} else if (pixnum < out) {
|
||||
intensity = 100;
|
||||
}
|
||||
val = newval;
|
||||
if (val == initial) {
|
||||
state = 3;
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
state = 0;
|
||||
val = 0;
|
||||
synchrotron.setPixelColor(i, synchrotron.Color(brightness * intensity / 100, 0, 0));
|
||||
}
|
||||
synchrotron.show();
|
||||
|
||||
count += 1;
|
||||
if (count > SYNCHROTRON_PIXELS) {
|
||||
rgb(brightness, 0, 0);
|
||||
count = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
newval = min(val, 255);
|
||||
rgbPWM(newval, newval, newval);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -144,17 +191,16 @@ bool glitch(int r, int g, int b) {
|
|||
static int state = 0;
|
||||
int i;
|
||||
|
||||
if (jiffies % 5 != 0) {
|
||||
if (jiffies % 10 != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (state) {
|
||||
case 0:
|
||||
// pick a random bit and clear it
|
||||
i = random(8);
|
||||
r &= ~(1 << i);
|
||||
g &= ~(1 << i);
|
||||
b &= ~(1 << i);
|
||||
// glitch to a random color
|
||||
r = random(brightness / 6);
|
||||
g = random(brightness / 6);
|
||||
b = random(brightness / 6);
|
||||
rgb(r, g, b);
|
||||
state = 1;
|
||||
break;
|
||||
|
@ -169,17 +215,21 @@ bool glitch(int r, int g, int b) {
|
|||
}
|
||||
|
||||
void fire() {
|
||||
rgb(0, 0xff, 0xff);
|
||||
pulse(32, 160);
|
||||
rgb(0, brightness, brightness);
|
||||
}
|
||||
|
||||
void fireDone() {
|
||||
rgb(powerColor[0], powerColor[1], powerColor[2]);
|
||||
rgbPWM(64, 64, 64);
|
||||
rgb(brightness, 0, 0);
|
||||
}
|
||||
|
||||
void flashDebug() {
|
||||
if (jiffies % 50 == 0) {
|
||||
int val = digitalRead(DEBUG);
|
||||
digitalWrite(DEBUG, (val==HIGH)?LOW:HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
int doPowered() {
|
||||
void tick() {
|
||||
static int doing = 0;
|
||||
static float val1 = 584.2;
|
||||
static bool firing = false;
|
||||
|
@ -194,26 +244,24 @@ int doPowered() {
|
|||
|
||||
switch (doing) {
|
||||
case 0: // doing nothing
|
||||
if (jiffies % 200 == 0) {
|
||||
doing = 1; // pulse
|
||||
if (jiffies % 300 == 0) {
|
||||
doing = 1; // KITT
|
||||
} else if (random(350) == 0) {
|
||||
doing = 2; // surge
|
||||
} else if (random(200) == 0) {
|
||||
} else if (random(400) == 0) {
|
||||
doing = 3; // glitch
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
if (pulse(64, 80)) {
|
||||
if (kitt()) {
|
||||
doing = 0;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
if (pulse(64, 120)) {
|
||||
doing = 0;
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
if (glitch(powerColor[0], powerColor[1], powerColor[2])) {
|
||||
if (glitch(brightness, 0, 0)) {
|
||||
doing = 0;
|
||||
}
|
||||
break;
|
||||
|
@ -249,37 +297,50 @@ int doPowered() {
|
|||
disp1.writeDisplay();
|
||||
}
|
||||
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void flashDebug() {
|
||||
if (jiffies % 50 == 0) {
|
||||
int val = digitalRead(DEBUG);
|
||||
digitalWrite(DEBUG, (val==HIGH)?LOW:HIGH);
|
||||
}
|
||||
flashDebug();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
static int state = 0;
|
||||
// 6 seems to be about what my overly-critical brain needs to buffer out
|
||||
// any music player delays so that they're unnoticeable
|
||||
unsigned long new_jiffies = millis() / 6;
|
||||
|
||||
// state machine
|
||||
// The delay is *outside* the state machine, you'll notice.
|
||||
// So don't call sleep in your state function.
|
||||
switch (state) {
|
||||
case 0:
|
||||
if (doStartup()) {
|
||||
state = 1;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
state = doPowered();
|
||||
break;
|
||||
if (new_jiffies > jiffies) {
|
||||
jiffies = new_jiffies;
|
||||
tick();
|
||||
}
|
||||
|
||||
flashDebug();
|
||||
/* Cleverness ensues
|
||||
*
|
||||
* The Adafruit library is written to let you go off and do whatever you need,
|
||||
* hooking into an interrupt to sort of act like a multitasking operating system,
|
||||
* interrupting your program periodically.
|
||||
*
|
||||
* That's smart, since it makes it easy to use,
|
||||
* but we want this to be responsive, and can't handle something barging in and taking up lots of time:
|
||||
* it makes things look really uneven as our display code pauses to fill the buffer.
|
||||
* Fortunately, we don't have to fill the entire buffer at once, we can trickle data in.
|
||||
* That's what this does.
|
||||
*
|
||||
* Since the entire program is polling, without ever calling delay,
|
||||
* and hopefully doing what needs to be done quickly,
|
||||
* we check to see if the music chip wants more data.
|
||||
* If it does, we give it one chunk, and only one chunk,
|
||||
* rather than filling its buffer back up completely.
|
||||
*
|
||||
* There is still some weirdness with this loop,
|
||||
* possibly because the SPI routines are masking interrupts used to increment millis.
|
||||
* But it's remarkably more fluid than the other way.
|
||||
*/
|
||||
|
||||
delay(12);
|
||||
jiffies += 1;
|
||||
if (musicPlayer.playingMusic && musicPlayer.readyForData()) {
|
||||
int bytesread = musicPlayer.currentTrack.read(musicPlayer.mp3buffer, VS1053_DATABUFFERLEN);
|
||||
if (bytesread == 0) {
|
||||
musicPlayer.playingMusic = false;
|
||||
musicPlayer.currentTrack.close();
|
||||
} else {
|
||||
musicPlayer.playData(musicPlayer.mp3buffer, bytesread);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue