Mostly-working forftanks implementation

This commit is contained in:
Neale Pickett 2010-07-14 15:21:20 -06:00
parent 74b9e8e455
commit c0d0d2de74
36 changed files with 1671 additions and 110 deletions

View File

@ -7,5 +7,7 @@ test: test-tanks
test-tanks: test-tanks.o ctanks.o
run-tanks: run-tanks.o ctanks.o cforf.o
clean:
rm -f test-tanks *.o

748
cforf.c Normal file
View File

@ -0,0 +1,748 @@
/* forf: a crappy Forth implementation
* Copyright (C) 2010 Adam Glasgall
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Notes
* -------------------------------------------------------
*
* This is intended to be implemented as a library. As such, it doesn't
* use the libc memory allocation functions. This may be a different
* programming style than you're used to.
*
* There are two data types: numbers and stacks. Because we can't
* allocate memory, stacks are implemented with begin and end markers
* and not new stack types.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cforf.h"
#include "dump.h"
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
char *forf_error_str[] = {
"None",
"Runtime",
"Parse",
"Underflow",
"Overflow",
"Type",
"No such procedure",
"Divide by zero",
};
/*
*
* Memory manipulation
*
*/
void
forf_memory_init(struct forf_memory *m,
long *values,
size_t size)
{
m->mem = values;
m->size = size;
}
/*
*
* Stack manipulation
*
*/
void
forf_stack_init(struct forf_stack *s,
struct forf_value *values,
size_t size)
{
s->stack = values;
s->size = size;
s->top = 0;
}
void
forf_stack_reset(struct forf_stack *s)
{
s->top = 0;
}
size_t
forf_stack_len(struct forf_stack *s)
{
return s->top;
}
int
forf_stack_push(struct forf_stack *s, struct forf_value *v)
{
if (s->top == s->size) {
return 0;
}
s->stack[(s->top)++] = *v;
return 1;
}
int
forf_stack_pop(struct forf_stack *s, struct forf_value *v)
{
if (0 == s->top) {
return 0;
}
*v = s->stack[--(s->top)];
return 1;
}
void
forf_stack_copy(struct forf_stack *dst, struct forf_stack *src)
{
int top = min(dst->size, src->top);
dst->top = top;
memcpy(dst->stack, src->stack, sizeof(*dst->stack) * top);
}
void
forf_stack_reverse(struct forf_stack *s)
{
struct forf_value val;
size_t pos;
for (pos = 0; pos < (s->top)/2; pos += 1) {
size_t qos = s->top - pos - 1;
val = s->stack[pos];
s->stack[pos] = s->stack[qos];
s->stack[qos] = val;
}
}
long
forf_pop_num(struct forf_env *env)
{
struct forf_value val;
if (! forf_stack_pop(env->data, &val)) {
env->error = forf_error_underflow;
return 0;
}
if (forf_type_number != val.type) {
forf_stack_push(env->data, &val);
env->error = forf_error_type;
return 0;
}
return val.v.i;
}
void
forf_push_num(struct forf_env *env, long i)
{
struct forf_value val;
val.type = forf_type_number;
val.v.i = i;
if (! forf_stack_push(env->data, &val)) {
env->error = forf_error_overflow;
}
}
/* Pop an entire stack
*
* DANGER WILL ROBINSON
*
* This returned stack points to values on the data stack. You must be
* finished with this stack before you push anything onto the data
* stack, otherwise your returned stack will be corrupted.
*/
struct forf_stack
forf_pop_stack(struct forf_env *env)
{
struct forf_stack s = { 0, 0, NULL };
struct forf_value val;
size_t depth = 1;
if (! forf_stack_pop(env->data, &val)) {
env->error = forf_error_underflow;
return s;
}
if (forf_type_stack_end != val.type) {
forf_stack_push(env->data, &val);
env->error = forf_error_type;
return s;
}
/* Duplicate just the stack onto s. Begin with -1 to account for the
end of list marker. */
s.size = -1;
while (depth) {
s.size += 1;
if (! forf_stack_pop(env->data, &val)) {
/* You should never underflow here, there should at least be a
stack begin marker. */
env->error = forf_error_runtime;
s.size = 0;
return s;
}
switch (val.type) {
case forf_type_stack_end:
depth += 1;
break;
case forf_type_stack_begin:
depth -= 1;
break;
}
}
s.top = s.size;
s.stack = (env->data->stack) + (env->data->top + 1);
return s;
}
/* Push an entire stack onto another stack.
*/
int
forf_push_stack(struct forf_stack *dst, struct forf_stack *src)
{
struct forf_value val;
while (forf_stack_pop(src, &val)) {
if (! forf_stack_push(dst, &val)) {
return 0;
}
}
return 1;
}
/* Push an entire stack onto the command stack.
*
* This is meant to work with the return value from forf_pop_stack.
*/
int
forf_push_to_command_stack(struct forf_env *env, struct forf_stack *src)
{
if (! forf_push_stack(env->command, src)) {
env->error = forf_error_overflow;
return 0;
}
return 1;
}
/* Move one value from src to dst. Note that one value could mean a
* whole substack, in which case dst gets the stack in reverse! dst can
* also be NULL, in which case a value is just discarded.
*
* Because of the reversing thing, it's important to make sure that the
* data stack is either src or dst. This way, the data stack will
* always have "reversed" substacks, and everything else will have them
* in the right order.
*/
int
forf_stack_move_value(struct forf_env *env,
struct forf_stack *dst,
struct forf_stack *src)
{
struct forf_value val;
size_t depth = 0;
do {
/* Pop from src */
if (! forf_stack_pop(env->command, &val)) {
env->error = forf_error_underflow;
return 0;
}
/* Push to dst (or discard if dst is NULL) */
if (dst) {
if (! forf_stack_push(env->data, &val)) {
env->error = forf_error_overflow;
return 0;
}
}
/* Deal with it being a substack marker */
switch (val.type) {
case forf_type_stack_begin:
depth += 1;
break;
case forf_type_stack_end:
depth -= 1;
break;
}
} while (depth > 0);
return 1;
}
/*
*
* Procedures
*
*/
#define unproc(name, op) \
static void \
forf_proc_ ## name(struct forf_env *env) \
{ \
long a = forf_pop_num(env); \
\
forf_push_num(env, op a); \
}
unproc(inv, ~)
unproc(not, !)
#define binproc(name, op) \
static void \
forf_proc_ ## name(struct forf_env *env) \
{ \
long a = forf_pop_num(env); \
long b = forf_pop_num(env); \
\
forf_push_num(env, b op a); \
}
binproc(add, +)
binproc(sub, -)
binproc(mul, *)
binproc(and, &)
binproc(or, |)
binproc(xor, ^)
binproc(lshift, <<)
binproc(rshift, >>)
binproc(gt, >)
binproc(ge, >=)
binproc(lt, <)
binproc(le, <=)
binproc(eq, ==)
binproc(ne, !=)
static void
forf_proc_div(struct forf_env *env)
{
long a = forf_pop_num(env);
long b = forf_pop_num(env);
if (0 == a) {
env->error = forf_error_divzero;
return;
}
forf_push_num(env, b / a);
}
static void
forf_proc_mod(struct forf_env *env)
{
long a = forf_pop_num(env);
long b = forf_pop_num(env);
if (0 == a) {
env->error = forf_error_divzero;
return;
}
forf_push_num(env, b % a);
}
static void
forf_proc_abs(struct forf_env *env)
{
forf_push_num(env, abs(forf_pop_num(env)));
}
static void
forf_proc_dup(struct forf_env *env)
{
long a = forf_pop_num(env);
forf_push_num(env, a);
forf_push_num(env, a);
}
static void
forf_proc_pop(struct forf_env *env)
{
forf_pop_num(env);
}
static void
forf_proc_exch(struct forf_env *env)
{
long a = forf_pop_num(env);
long b = forf_pop_num(env);
forf_push_num(env, a);
forf_push_num(env, b);
}
static void
forf_proc_if(struct forf_env *env)
{
struct forf_stack ifclause = forf_pop_stack(env);
long cond = forf_pop_num(env);
if (cond) {
forf_push_to_command_stack(env, &ifclause);
}
}
static void
forf_proc_ifelse(struct forf_env *env)
{
struct forf_stack elseclause = forf_pop_stack(env);
struct forf_stack ifclause = forf_pop_stack(env);
long cond = forf_pop_num(env);
if (cond) {
forf_push_to_command_stack(env, &ifclause);
} else {
forf_push_to_command_stack(env, &elseclause);
}
}
static void
forf_proc_memset(struct forf_env *env)
{
long pos = forf_pop_num(env);
long a = forf_pop_num(env);
if (pos >= env->memory->size) {
env->error = forf_error_overflow;
return;
}
env->memory->mem[pos] = a;
}
static void
forf_proc_memget(struct forf_env *env)
{
long pos = forf_pop_num(env);
if (pos >= env->memory->size) {
env->error = forf_error_overflow;
return;
}
forf_push_num(env, env->memory->mem[pos]);
}
/*
*
* Lexical environment
*
*/
struct forf_lexical_env forf_base_lexical_env[] = {
{"~", forf_proc_inv},
{"!", forf_proc_not},
{"+", forf_proc_add},
{"-", forf_proc_sub},
{"*", forf_proc_mul},
{"/", forf_proc_div},
{"%", forf_proc_mod},
{"&", forf_proc_and},
{"|", forf_proc_or},
{"^", forf_proc_xor},
{"<<", forf_proc_lshift},
{">>", forf_proc_rshift},
{">", forf_proc_gt},
{">=", forf_proc_ge},
{"<", forf_proc_lt},
{"<=", forf_proc_le},
{"=", forf_proc_eq},
{"<>", forf_proc_ne},
{"abs", forf_proc_abs},
{"dup", forf_proc_dup},
{"pop", forf_proc_pop},
{"exch", forf_proc_exch},
{"if", forf_proc_if},
{"ifelse", forf_proc_ifelse},
{"mset", forf_proc_memset},
{"mget", forf_proc_memget},
{NULL, NULL}
};
/** Extend a lexical environment */
int
forf_extend_lexical_env(struct forf_lexical_env *dest,
struct forf_lexical_env *src,
size_t size)
{
int base, i;
for (base = 0; dest[base].name; base += 1);
for (i = 0; (base+i < size) && (src[i].name); i += 1) {
dest[base+i] = src[i];
}
if (base + i == size) {
/* Not enough room */
return 0;
}
dest[base+i].name = NULL;
dest[base+i].proc = NULL;
return 1;
}
/*
*
* Parsing
*
*/
static int
forf_push_token(struct forf_env *env, char *token, size_t tokenlen)
{
long i;
char s[MAX_TOKEN_LEN + 1];
char *endptr;
struct forf_value val;
/* Zero-length token yields int:0 from strtol */
/* NUL-terminate it */
memcpy(s, token, tokenlen);
s[tokenlen] = '\0';
/* Try to make in an integer */
i = strtol(s, &endptr, 0);
if ('\0' == *endptr) {
/* Was an int */
val.type = forf_type_number;
val.v.i = i;
} else {
/* If not an int, a procedure name */
val.type = forf_type_proc;
for (i = 0; NULL != env->lenv[i].name; i += 1) {
if (0 == strcmp(s, env->lenv[i].name)) {
val.v.p = env->lenv[i].proc;
break;
}
}
if (NULL == env->lenv[i].name) {
env->error = forf_error_noproc;
return 0;
}
}
if (! forf_stack_push(env->command, &val)) {
env->error = forf_error_overflow;
return 0;
}
return 1;
}
/* Parse an input stream onto the command stack */
int
forf_parse_stream(struct forf_env *env,
forf_getch_func *getch,
void *datum)
{
int running = 1;
long pos = 0;
char token[MAX_TOKEN_LEN];
size_t tokenlen = 0;
struct forf_value val;
size_t stack_depth = 0;
int comment = 0;
#define _tokenize() \
do { \
if (tokenlen) { \
if (! forf_push_token(env, token, tokenlen)) return pos; \
tokenlen = 0; \
} \
} while (0)
while (running) {
int c;
c = getch(datum);
pos += 1;
/* Handle comments */
if (comment) {
if (')' == c) {
comment = 0;
}
continue;
}
switch (c) {
case EOF:
running = 0;
break;
case '(':
comment = 1;
break;
case ' ':
case '\f':
case '\n':
case '\r':
case '\t':
case '\v':
_tokenize();
break;
case '{':
_tokenize();
val.type = forf_type_stack_begin;
if (! forf_stack_push(env->command, &val)) {
env->error = forf_error_overflow;
return pos;
}
stack_depth += 1;
break;
case '}':
_tokenize();
val.type = forf_type_stack_end;
if (! forf_stack_push(env->command, &val)) {
env->error = forf_error_overflow;
return pos;
}
stack_depth -= 1;
break;
default:
if (tokenlen < sizeof(token)) {
token[tokenlen++] = c;
}
break;
}
}
_tokenize();
if (0 != stack_depth) {
env->error = forf_error_parse;
return pos;
}
// The first thing we read should be the first thing we do
forf_stack_reverse(env->command);
return 0;
}
struct forf_char_stream {
char *buf;
size_t len;
size_t pos;
};
static int
forf_string_getch(struct forf_char_stream *stream)
{
if (stream->pos >= stream->len) {
return EOF;
}
return stream->buf[stream->pos++];
}
int
forf_parse_buffer(struct forf_env *env,
char *buf,
size_t len)
{
struct forf_char_stream stream;
stream.buf = buf;
stream.len = len;
stream.pos = 0;
return forf_parse_stream(env, (forf_getch_func *)forf_string_getch, &stream);
}
int
forf_parse_string(struct forf_env *env,
char *str)
{
return forf_parse_buffer(env, str, strlen(str));
}
int
forf_parse_file(struct forf_env *env,
FILE *f)
{
return forf_parse_stream(env, (forf_getch_func *)fgetc, f);
}
/*
*
* Forf environment
*
*/
void
forf_env_init(struct forf_env *env,
struct forf_lexical_env *lenv,
struct forf_stack *data,
struct forf_stack *cmd,
struct forf_memory *mem,
void *udata)
{
env->lenv = lenv;
env->data = data;
env->command = cmd;
env->memory = mem;
env->udata = udata;
}
int
forf_eval_once(struct forf_env *env)
{
struct forf_value val;
if (! forf_stack_pop(env->command, &val)) {
env->error = forf_error_underflow;
return 0;
}
switch (val.type) {
case forf_type_number:
case forf_type_stack_begin:
// Push back on command stack, then move it
forf_stack_push(env->command, &val);
if (! forf_stack_move_value(env, env->data, env->command)) return 0;
break;
case forf_type_proc:
(val.v.p)(env);
break;
default:
env->error = forf_error_runtime;
return 0;
}
return 1;
}
int
forf_eval(struct forf_env *env)
{
int ret;
while (env->command->top) {
ret = forf_eval_once(env);
if ((! ret) || (env->error)) {
return 0;
}
}
return 1;
}

146
cforf.h Normal file
View File

@ -0,0 +1,146 @@
#ifndef __CFORF_H__
#define __CFORF_H__
#include <stdio.h>
#include <inttypes.h>
#define MAX_TOKEN_LEN 20
#define MAX_CMDSTACK 200
struct forf_env;
enum forf_value_type {
forf_type_number,
forf_type_proc,
forf_type_stack_begin,
forf_type_stack_end,
};
enum forf_error_type {
forf_error_none,
forf_error_runtime,
forf_error_parse,
forf_error_underflow,
forf_error_overflow,
forf_error_type,
forf_error_noproc,
forf_error_divzero,
};
extern char *forf_error_str[];
typedef void (forf_proc)(struct forf_env *);
struct forf_value {
enum forf_value_type type;
union {
forf_proc *p;
long i;
} v;
};
struct forf_stack {
size_t size;
size_t top;
struct forf_value *stack;
};
struct forf_memory {
size_t size;
long *mem;
};
struct forf_lexical_env {
char *name;
forf_proc *proc;
};
struct forf_env {
enum forf_error_type error;
struct forf_lexical_env *lenv;
struct forf_stack *data;
struct forf_stack *command;
struct forf_memory *memory;
void *udata;
};
/*
*
* Main entry points
*
*/
/** Initialize a memory structure, given an array of longs */
void forf_memory_init(struct forf_memory *m,
long *values,
size_t size);
/** Initialize a stack, given an array of values */
void forf_stack_init(struct forf_stack *s,
struct forf_value *values,
size_t size);
void forf_stack_reset(struct forf_stack *s);
void forf_stack_copy(struct forf_stack *dst, struct forf_stack *src);
int forf_stack_push(struct forf_stack *s, struct forf_value *v);
int forf_stack_pop(struct forf_stack *s, struct forf_value *v);
/** Pop a number off the data stack */
long forf_pop_num(struct forf_env *env);
/** Push a number onto the data stack */
void forf_push_num(struct forf_env *env, long i);
/** Pop a whole stack */
struct forf_stack forf_pop_stack(struct forf_env *env);
/** The base lexical environment */
extern struct forf_lexical_env forf_base_lexical_env[];
/** Extend a lexical environment */
int
forf_extend_lexical_env(struct forf_lexical_env *dest,
struct forf_lexical_env *src,
size_t size);
/** Initialize a forf runtime environment.
*
* data, cmd, and mem should have already been initialized
*/
void forf_env_init(struct forf_env *env,
struct forf_lexical_env *lenv,
struct forf_stack *data,
struct forf_stack *cmd,
struct forf_memory *mem,
void *udata);
/** The type of a getch function (used for parsing) */
typedef int (forf_getch_func)(void *);
/** Parse something by calling getch(datum) */
int forf_parse_stream(struct forf_env *env,
forf_getch_func *getch,
void *datum);
/** Parse a buffer */
int forf_parse_buffer(struct forf_env *env,
char *buf,
size_t len);
/** Parse a string */
int forf_parse_string(struct forf_env *env,
char *str);
/** Parse a FILE * */
int forf_parse_file(struct forf_env *env,
FILE *f);
/** Evaluate the topmost value on the command stack */
int forf_eval_once(struct forf_env *env);
/** Evaluate the entire command stack */
int forf_eval(struct forf_env *env);
#endif

214
ctanks.c
View File

@ -12,6 +12,7 @@
#define DUMP_s(v) DUMPf("%s = %s", #v, v)
#define DUMP_c(v) DUMPf("%s = %c", #v, v)
#define DUMP_f(v) DUMPf("%s = %f", #v, v)
#define DUMP_p(v) DUMPf("%s = %p", #v, v)
#define DUMP_xy(v) DUMPf("%s = (%f, %f)", #v, v[0], v[1]);
#define DUMP_angle(v) DUMPf("%s = %.3fπ", #v, (v/PI));
@ -41,8 +42,8 @@ tank_fire(struct tank *tank)
void
tank_set_speed(struct tank *tank, float left, float right)
{
tank->speed.desired[0] = left;
tank->speed.desired[1] = right;
tank->speed.desired[0] = min(max(left, -100), 100);
tank->speed.desired[1] = min(max(right, -100), 100);
}
float
@ -90,32 +91,69 @@ rotate_point(float angle, float point[2])
static void
tank_sensor_calc(struct tanks_game *game,
struct tank *this,
struct tank *that,
float dist2)
tanks_fire_cannon(struct tanks_game *game,
struct tank *this,
struct tank *that,
float vector[2],
float dist2)
{
float tpos[2];
int i;
float theta = this->angle + this->turret.current;
float rpos[2];
/* Translate other tank's position to make us the origin */
for (i = 0; i < 2; i += 1) {
tpos[i] = that->position[i] - this->position[i];
/* If someone's a crater, this is easy */
if (this->killer || that->killer) {
return;
}
/* Did they collide? */
if (dist2 < TANK_COLLISION_ADJ2) {
this->killer = that;
this->cause_death = "collision";
that->killer = this;
that->cause_death = "collision";
return;
}
/* No need to check if it's not even firing */
if (! this->turret.firing) {
return;
}
/* Also no need to check if it's outside cannon range */
if (dist2 > TANK_CANNON_ADJ2) {
return;
}
/* Did this shoot that? Rotate point by turret degrees, and if |y| <
TANK_RADIUS, we have a hit. */
if ((this->turret.firing) && (dist2 <= TANK_CANNON_RANGE)) {
int theta = this->angle + this->turret.current;
float rpos[2];
rpos[0] = vector[0];
rpos[1] = vector[1];
rotate_point(-theta, rpos);
if (fabsf(rpos[1]) < TANK_RADIUS) {
that->killer = this;
that->cause_death = "shot";
}
}
rpos[0] = tpos[0];
rpos[1] = tpos[1];
rotate_point(-theta, rpos);
if (fabsf(rpos[1]) < TANK_RADIUS) {
that->killer = this;
that->cause_death = "shot";
}
static void
tanks_sensor_calc(struct tanks_game *game,
struct tank *this,
struct tank *that,
float vector[2],
float dist2)
{
int i;
/* If someone's a crater, this is easy */
if (this->killer || that->killer) {
return;
}
/* If they're not inside the max sensor, just skip it */
if (dist2 > TANK_SENSOR_ADJ2) {
return;
}
/* Calculate sensors */
@ -124,6 +162,11 @@ tank_sensor_calc(struct tanks_game *game,
float rpos[2];
float m_r, m_s;
if (0 == this->sensors[i].range) {
/* Sensor doesn't exist */
continue;
}
/* No need to re-check this sensor if it's already firing */
if (this->sensors[i].triggered) {
continue;
@ -139,11 +182,10 @@ tank_sensor_calc(struct tanks_game *game,
if (this->sensors[i].turret) {
theta += this->turret.current;
}
theta = fmodf(theta, 2*PI);
/* Rotate tpos by theta */
rpos[0] = tpos[0];
rpos[1] = tpos[1];
/* Rotate their position by theta */
rpos[0] = vector[0];
rpos[1] = vector[1];
rotate_point(-theta, rpos);
/* Sensor is symmetrical, we can consider only top quadrants */
@ -153,14 +195,6 @@ tank_sensor_calc(struct tanks_game *game,
m_s = 1 / tanf(this->sensors[i].width / 2);
m_r = rpos[0] / rpos[1];
if (1 == i) {
DUMP();
DUMP_angle(this->angle);
DUMP_angle(theta);
DUMP_xy(tpos);
DUMP_xy(rpos);
}
/* If our inverse slope is less than theirs, they're inside the arc */
if (m_r >= m_s) {
this->sensors[i].triggered = 1;
@ -177,52 +211,30 @@ tank_sensor_calc(struct tanks_game *game,
}
void
do_shit_with(struct tanks_game *game,
struct tank *this,
struct tank *that)
compute_vector(struct tanks_game *game,
float vector[2],
float *dist2,
struct tank *this,
struct tank *that)
{
float vector[2];
float dist2; /* distance squared */
float tpos; /* Translated position */
int i;
/* Don't bother if that is dead */
/* XXX: If three tanks occupy the same space at the same time, only
the first two will collide. */
if ((this->killer) || (that->killer)) {
return;
}
/* Establish shortest vector from center of this to center of that,
* taking wrapping into account */
for (i = 0; i < 2; i += 1) {
float halfsize = game->size[i] / 2;
vector[i] = halfsize - fabsf(that->position[i] - this->position[i] - halfsize);
vector[i] = that->position[i] - this->position[i];
if (vector[i] > halfsize) {
vector[i] = vector[i] - game->size[i];
}
else if (vector[i] < -halfsize) {
vector[i] = game->size[i] + vector[i];
}
}
/* Compute distance^2 for range comparisons */
dist2 = sq(vector[0]) + sq(vector[1]);
/* If they're not within sensor range, there's nothing to do. */
if (dist2 > TANK_SENSOR_ADJ2) {
return;
}
/* Did they collide? */
if (dist2 < TANK_COLLISION_ADJ2) {
this->killer = that;
this->cause_death = "collision";
that->killer = this;
that->cause_death = "collision";
return;
}
/* Figure out who's whomin' whom */
tank_sensor_calc(game, this, that, dist2);
tank_sensor_calc(game, that, this, dist2);
*dist2 = sq(vector[0]) + sq(vector[1]);
}
void
@ -232,6 +244,7 @@ tanks_move_tank(struct tanks_game *game,
int i;
float movement;
float angle;
int dir = 1;
/* Rotate the turret */
{
@ -282,7 +295,6 @@ tanks_move_tank(struct tanks_game *game,
float So, Si;
float r;
float theta;
int dir;
/* The first thing Paul's code does is find "friction", which seems
to be a penalty for having the treads go in opposite directions.
@ -322,8 +334,8 @@ tanks_move_tank(struct tanks_game *game,
{
float m[2];
m[0] = cosf(tank->angle) * movement;
m[1] = sinf(tank->angle) * movement;
m[0] = cosf(tank->angle) * movement * dir;
m[1] = sinf(tank->angle) * movement * dir;
for (i = 0; i < 2; i += 1) {
tank->position[i] = fmodf(tank->position[i] + m[i] + game->size[i],
@ -335,33 +347,69 @@ tanks_move_tank(struct tanks_game *game,
void
tanks_run_turn(struct tanks_game *game, struct tank *tanks, int ntanks)
{
int i, j;
int i, j;
float vector[2];
float dist2; /* distance squared */
/* Run programs */
for (i = 0; i < ntanks; i += 1) {
if (! tanks[i].killer) {
tanks[i].run(&tanks[i], &tanks[i].udata);
}
/* It takes (at least) two to tank-o */
if (ntanks < 2) {
return;
}
/* Clear sensors */
/* Charge cannons and reset sensors */
for (i = 0; i < ntanks; i += 1) {
if (tanks[i].turret.firing) {
tanks[i].turret.firing = 0;
tanks[i].turret.recharge = TANK_CANNON_RECHARGE;
}
if (tanks[i].killer) continue;
if (tanks[i].turret.recharge) {
tanks[i].turret.recharge -= 1;
}
for (j = 0; j < TANK_MAX_SENSORS; j += 1) {
tanks[i].sensors[j].triggered = 0;
}
}
/* Move */
/* Move tanks */
for (i = 0; i < ntanks; i += 1) {
if (! tanks[i].killer) {
tanks_move_tank(game, &(tanks[i]));
if (tanks[i].killer) continue;
tanks_move_tank(game, &(tanks[i]));
}
/* Probe sensors */
for (i = 0; i < ntanks; i += 1) {
if (tanks[i].killer) continue;
for (j = i + 1; j < ntanks; j += 1) {
struct tank *this = &tanks[i];
struct tank *that = &tanks[j];
compute_vector(game, vector, &dist2, this, that);
tanks_sensor_calc(game, this, that, vector, dist2);
vector[0] = -vector[0];
vector[1] = -vector[1];
tanks_sensor_calc(game, that, this, vector, dist2);
}
}
/* Sense and fire */
/* Run programs */
for (i = 0; i < ntanks; i += 1) {
if (tanks[i].killer) continue;
tanks[i].run(&tanks[i], tanks[i].udata);
}
/* Fire cannons and check for crashes */
for (i = 0; i < ntanks; i += 1) {
if (tanks[i].killer) continue;
for (j = i + 1; j < ntanks; j += 1) {
do_shit_with(game, &(tanks[i]), &(tanks[j]));
struct tank *this = &tanks[i];
struct tank *that = &tanks[j];
compute_vector(game, vector, &dist2, this, that);
tanks_fire_cannon(game, this, that, vector, dist2);
vector[0] = -vector[0];
vector[1] = -vector[1];
tanks_fire_cannon(game, that, this, vector, dist2);
}
}
}

View File

@ -4,13 +4,14 @@
/* Some useful constants */
#define PI 3.14159265358979323846
#define TANK_MAX_SENSORS 10
#define TANK_RADIUS 7.5
#define TANK_SENSOR_RANGE 100
#define TANK_CANNON_RANGE (TANK_SENSOR_RANGE / 2)
#define TANK_MAX_ACCEL 35
#define TANK_MAX_TURRET_ROT (PI/3)
#define TANK_TOP_SPEED 7
#define TANK_MAX_SENSORS 10
#define TANK_RADIUS 7.5
#define TANK_SENSOR_RANGE 100
#define TANK_CANNON_RECHARGE 20 /* Turns to recharge cannon */
#define TANK_CANNON_RANGE (TANK_SENSOR_RANGE / 2)
#define TANK_MAX_ACCEL 35
#define TANK_MAX_TURRET_ROT (PI/3)
#define TANK_TOP_SPEED 7
/* (tank radius + tank radius)^2 */
#define TANK_COLLISION_ADJ2 \
@ -22,9 +23,12 @@
#define TANK_SENSOR_ADJ2 \
((TANK_SENSOR_RANGE + TANK_RADIUS) * (TANK_SENSOR_RANGE + TANK_RADIUS))
#define TANK_CANNON_ADJ2 \
((TANK_CANNON_RANGE + TANK_RADIUS) * (TANK_CANNON_RANGE + TANK_RADIUS))
#ifndef rad2deg
#define rad2deg(r) ((int)(180*(r)/PI))
#define deg2rad(r) ((r*PI)/180)
#endif
#ifndef max
@ -42,7 +46,6 @@ struct sensor {
float angle;
float width;
int range;
int range_adj2; /* (range + TANK_RADIUS)^2 */
int turret; /* Mounted to turret? */
int triggered;
};

14
dump.h Normal file
View File

@ -0,0 +1,14 @@
#ifndef __DUMP_H__
/* Debugging help */
#define DUMPf(fmt, args...) fprintf(stderr, "%s:%s:%d " fmt "\n", __FILE__, __FUNCTION__, __LINE__, ##args)
#define DUMP() DUMPf("")
#define DUMP_d(v) DUMPf("%s = %d", #v, v)
#define DUMP_x(v) DUMPf("%s = 0x%x", #v, v)
#define DUMP_s(v) DUMPf("%s = %s", #v, v)
#define DUMP_c(v) DUMPf("%s = %c", #v, v)
#define DUMP_f(v) DUMPf("%s = %f", #v, v)
#define DUMP_p(v) DUMPf("%s = %p", #v, v)
#define DUMP_xy(v) DUMPf("%s = (%f, %f)", #v, v[0], v[1]);
#endif

View File

@ -0,0 +1 @@
Neale Pickett <neale@woozle.org>

View File

@ -0,0 +1 @@
berzerker

View File

@ -0,0 +1,15 @@
2 random
0 =
{ 50 100 set-speed! }
{ 100 50 set-speed! }
ifelse
4 random
0 =
{ 360 random set-turret! }
if
30 random
0 =
{ fire! }
if

View File

@ -0,0 +1 @@
Neale Pickett <neale@woozle.org>

View File

@ -0,0 +1 @@
Rabbit With Gun

View File

@ -0,0 +1,26 @@
100 100 set-speed!
( Always set turret to 180 degrees )
180 set-turret!
( Vary walk 1/8 of the time )
8 random
0 =
{
2 random
0 =
{ 70 100 set-speed! }
{ 100 70 set-speed! }
ifelse
}
if
( If you see something, shoot it )
0 sensor?
{ fire! }
if
( Turn, if trouble lies ahead )
1 sensor?
{ 0 100 set-speed! }
if

View File

@ -0,0 +1 @@
50 0 0 1

View File

@ -0,0 +1 @@
70 0 50 0

View File

@ -0,0 +1 @@
Paul Ferrell <pflarr@lanl.gov>

View File

@ -0,0 +1 @@
Simpleton

View File

@ -0,0 +1,5 @@
90 100 set-speed!
0 set-turret!
0 sensor? { fire! } if
1 sensor? { -100 100 set-speed! } if

View File

@ -0,0 +1 @@
50 0 5 1

View File

@ -0,0 +1 @@
30 0 50

View File

@ -0,0 +1 @@
Neale Pickett <neale@lanl.gov>

View File

@ -0,0 +1 @@
Sitting Duck with Teeth

View File

@ -0,0 +1,3 @@
0 sensor? { fire! } if
1 sensor? { get-turret 40 + set-turret! } if
2 sensor? { get-turret 40 - set-turret! } if

View File

@ -0,0 +1 @@
50 0 10 1

View File

@ -0,0 +1 @@
100 90 150 1

View File

@ -0,0 +1 @@
100 270 150 1

View File

@ -0,0 +1 @@
Neale Pickett <neale@lanl.gov>

View File

@ -0,0 +1 @@
Sweeper

View File

@ -0,0 +1,10 @@
3 random
dup 0 = { 70 70 set-speed! } if
dup 1 = { 40 70 set-speed! } if
2 = { 70 40 set-speed! } if
get-turret 20 - set-turret!
3 sensor? { 0 0 set-speed! } if
1 sensor? { get-turret 60 + set-turret! } if
2 sensor? { get-turret 60 - set-turret! } if
0 sensor? { fire! } if

View File

@ -0,0 +1 @@
50 0 5 1

View File

@ -0,0 +1 @@
100 90 150 1

View File

@ -0,0 +1 @@
100 270 150 1

View File

@ -0,0 +1 @@
100 0 359 0

524
run-tanks.c Normal file
View File

@ -0,0 +1,524 @@
#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "ctanks.h"
#include "cforf.h"
#include "dump.h"
#define MAX_TANKS 50
#define ROUNDS 500
#define SPACING 150
#define LENV_SIZE 100
#define DSTACK_SIZE 200
#define CSTACK_SIZE 500
#define MEMORY_SIZE 10
struct forftank {
struct forf_env env;
char color[7]; /* "ff0088" */
char name[50];
struct forf_stack _prog;
struct forf_value _progvals[CSTACK_SIZE];
struct forf_stack _cmd;
struct forf_value _cmdvals[CSTACK_SIZE];
struct forf_stack _data;
struct forf_value _datavals[DSTACK_SIZE];
struct forf_memory _mem;
long _memvals[MEMORY_SIZE];
};
#ifndef NODEBUG
void
forf_print_val(struct forf_value *val)
{
switch (val->type) {
case forf_type_number:
printf("%d", val->v.i);
break;
case forf_type_proc:
printf("[proc %p]", val->v.p);
break;
case forf_type_stack_begin:
printf("{");
break;
case forf_type_stack_end:
printf("}");
break;
}
}
void
forf_print_stack(struct forf_stack *s)
{
size_t pos;
for (pos = 0; pos < s->top; pos += 1) {
forf_print_val(&(s->stack[pos]));
printf(" ");
}
}
void
forf_dump_stack(struct forf_stack *s)
{
printf("Stack at %p: ", s);
forf_print_stack(s);
printf("\n");
}
#endif
/*
*
* Forf API
*
*/
/** Has the turret recharged? */
void
forf_tank_fire_ready(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
forf_push_num(env, tank_fire_ready(tank));
}
/** Fire! */
void
forf_tank_fire(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
tank_fire(tank);
}
/** Set desired speed */
void
forf_tank_set_speed(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
long right = forf_pop_num(env);
long left = forf_pop_num(env);
tank_set_speed(tank, left, right);
}
/** Get the current turret angle */
void
forf_tank_get_turret(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
float angle = tank_get_turret(tank);
forf_push_num(env, rad2deg(angle));
}
/** Set the desired turret angle */
void
forf_tank_set_turret(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
long angle = forf_pop_num(env);
tank_set_turret(tank, deg2rad(angle));
}
/** Is a sensor active? */
void
forf_tank_get_sensor(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
long sensor_num = forf_pop_num(env);
forf_push_num(env, tank_get_sensor(tank, sensor_num));
}
/** Set the LED state */
void
forf_tank_set_led(struct forf_env *env)
{
struct tank *tank = (struct tank *)env->udata;
long active = forf_pop_num(env);
tank_set_led(tank, active);
}
/** Pick a random number */
void
forf_proc_random(struct forf_env *env)
{
long max = forf_pop_num(env);
forf_push_num(env, rand() % max);
}
/* Tanks lexical environment */
struct forf_lexical_env tanks_lenv_addons[] = {
{"fire-ready?", forf_tank_fire_ready},
{"fire!", forf_tank_fire},
{"set-speed!", forf_tank_set_speed},
{"get-turret", forf_tank_get_turret},
{"set-turret!", forf_tank_set_turret},
{"sensor?", forf_tank_get_sensor},
{"set-led!", forf_tank_set_led},
{"random", forf_proc_random},
{NULL, NULL}
};
/*
*
* Filesystem stuff
*
*/
int
ft_read_file(char *ptr, size_t size, char *dir, char *fn)
{
char path[256];
FILE *f = NULL;
int ret;
int success = 0;
do {
snprintf(path, sizeof(path), "%s/%s", dir, fn);
f = fopen(path, "r");
if (! f) break;
ret = fread(ptr, 1, size - 1, f);
ptr[ret] = '\0';
if (! ret) break;
success = 1;
} while (0);
if (f) fclose(f);
if (! success) {
return 0;
}
return 1;
}
void
ft_bricked_tank(struct tank *tank, void *ignored)
{
/* Do nothing, the tank is comatose */
}
void
ft_run_tank(struct tank *tank, struct forftank *ftank)
{
int ret;
/* Copy program into command stack */
forf_stack_copy(&ftank->_cmd, &ftank->_prog);
forf_stack_reset(&ftank->_data);
ret = forf_eval(&ftank->env);
if (! ret) {
fprintf(stderr, "Error in %s: %s\n",
ftank->name,
forf_error_str[ftank->env.error]);
}
}
int
ft_read_program(struct forftank *ftank,
struct tank *tank,
struct forf_lexical_env *lenv,
char *path)
{
int ret;
char progpath[256];
FILE *f;
/* Open program */
snprintf(progpath, sizeof(progpath), "%s/program", path);
f = fopen(progpath, "r");
if (! f) return 0;
/* Parse program */
ret = forf_parse_file(&ftank->env, f);
fclose(f);
if (ret) {
fprintf(stderr, "Parse error in %s, character %d: %s\n",
progpath,
ret,
forf_error_str[ftank->env.error]);
return 0;
}
/* Back up the program so we can run it over and over without
needing to re-parse */
forf_stack_copy(&ftank->_prog, &ftank->_cmd);
tank_init(tank, (tank_run_func *)ft_run_tank, ftank);
return 1;
}
void
ft_tank_init(struct forftank *ftank,
struct tank *tank,
struct forf_lexical_env *lenv)
{
/* Set up forf environment */
forf_stack_init(&ftank->_prog, ftank->_progvals, CSTACK_SIZE);
forf_stack_init(&ftank->_cmd, ftank->_cmdvals, CSTACK_SIZE);
forf_stack_init(&ftank->_data, ftank->_datavals, DSTACK_SIZE);
forf_memory_init(&ftank->_mem, ftank->_memvals, MEMORY_SIZE);
forf_env_init(&ftank->env,
lenv,
&ftank->_data,
&ftank->_cmd,
&ftank->_mem,
tank);
}
void
ft_read_sensors(struct tank *tank,
char *path)
{
int i;
for (i = 0; i < TANK_MAX_SENSORS; i += 1) {
int ret;
char fn[10];
char s[20];
char *p = s;
long range;
long angle;
long width;
long turret;
snprintf(fn, sizeof(fn), "sensor%d", i);
ret = ft_read_file(s, sizeof(s), path, fn);
if (! ret) {
s[0] = 0;
}
range = strtol(p, &p, 0);
angle = strtol(p, &p, 0);
width = strtol(p, &p, 0);
turret = strtol(p, &p, 0);
tank->sensors[i].range = min(range, TANK_SENSOR_RANGE);
tank->sensors[i].angle = deg2rad(angle % 360);
tank->sensors[i].width = deg2rad(width % 360);
tank->sensors[i].turret = (0 != turret);
}
}
int
ft_read_tank(struct forftank *ftank,
struct tank *tank,
struct forf_lexical_env *lenv,
char *path)
{
int ret;
/* What is your name? */
ret = ft_read_file(ftank->name, sizeof(ftank->name), path, "name");
if (! ret) {
strncpy(ftank->name, path, sizeof(ftank->name));
}
/* What is your quest? */
ft_tank_init(ftank, tank, lenv);
ret = ft_read_program(ftank, tank, lenv, path);
if (ret) {
ft_read_sensors(tank, path);
} else {
/* Brick the tank */
tank_init(tank, ft_bricked_tank, NULL);
}
/* What is your favorite color? */
ret = ft_read_file(ftank->color, sizeof(ftank->color), path, "color");
if (! ret) {
strncpy(ftank->color, "808080", sizeof(ftank->color));
}
return 1;
}
void
print_header(FILE *f,
struct tanks_game *game,
struct forftank *forftanks,
struct tank *tanks,
int ntanks)
{
int i, j;
fprintf(f, "[[%d, %d, %d],[\n",
(int)game->size[0], (int)game->size[1], TANK_CANNON_RANGE);
for (i = 0; i < ntanks; i += 1) {
fprintf(f, " [\"#%s\",[", forftanks[i].color);
for (j = 0; j < TANK_MAX_SENSORS; j += 1) {
struct sensor *s = &(tanks[i].sensors[j]);
if (! s->range) {
continue;
}
fprintf(f, "[%d, %.2f, %.2f, %d],",
(int)(s->range),
s->angle,
s->width,
s->turret);
}
fprintf(f, "]],\n");
}
fprintf(f, "],[\n");
}
void
print_footer(FILE *f)
{
fprintf(f, "]]\n");
}
int
main(int argc, char *argv[])
{
struct tanks_game game;
struct forftank myftanks[MAX_TANKS];
struct tank mytanks[MAX_TANKS];
struct forf_lexical_env lenv[LENV_SIZE];
int order[MAX_TANKS];
int ntanks = 0;
int i;
int alive;
lenv[0].name = NULL;
lenv[0].proc = NULL;
if ((! forf_extend_lexical_env(lenv, forf_base_lexical_env, LENV_SIZE)) ||
(! forf_extend_lexical_env(lenv, tanks_lenv_addons, LENV_SIZE))) {
fprintf(stderr, "Unable to initialize lexical environment.\n");
return 1;
}
/* We only need slightly random numbers */
{
char *s = getenv("SEED");
int seed = atoi(s?s:"");
if (! seed) {
seed = getpid();
}
srand(seed);
fprintf(stdout, "// SEED=%d\n", seed);
}
/* Shuffle the order we read things in */
for (i = 0; i < MAX_TANKS; i += 1) {
order[i] = i;
}
for (i = 0; i < argc - 1; i += 1) {
int j = rand() % (argc - 1);
int n = order[j];
order[j] = order[i];
order[i] = n;
}
/* Every argument is a tank directory */
for (i = 0; i < argc - 1; i += 1) {
if (ft_read_tank(&myftanks[ntanks],
&mytanks[ntanks],
lenv,
argv[order[i] + 1])) {
ntanks += 1;
}
}
if (0 == ntanks) {
fprintf(stderr, "No usable tanks!\n");
return 1;
}
/* Calculate the size of the game board */
{
int x, y;
for (x = 1; x * x < ntanks; x += 1);
y = ntanks / x;
if (ntanks % x) {
y += 1;
}
game.size[0] = x * SPACING;
game.size[1] = y * SPACING;
}
/* Position tanks */
{
int x = 50;
int y = 50;
for (i = 0; i < ntanks; i += 1) {
mytanks[i].position[0] = (float)x;
mytanks[i].position[1] = (float)y;
mytanks[i].angle = deg2rad(rand() % 360);
mytanks[i].turret.current = deg2rad(rand() % 360);
x += SPACING;
if (x > game.size[0]) {
x %= (int)(game.size[0]);
y += SPACING;
}
}
}
print_header(stdout, &game, myftanks, mytanks, ntanks);
/* Run rounds */
alive = ntanks;
for (i = 0; (alive > 1) && (i < ROUNDS); i += 1) {
int j;
tanks_run_turn(&game, mytanks, ntanks);
fprintf(stdout, "[\n");
alive = ntanks;
for (j = 0; j < ntanks; j += 1) {
struct tank *t = &(mytanks[j]);
if (t->killer) {
alive -= 1;
fprintf(stdout, " 0,\n");
} else {
int k;
int flags = 0;
int sensors = 0;
for (k = 0; k < TANK_MAX_SENSORS; k += 1) {
if (t->sensors[k].triggered) {
sensors |= (1 << k);
}
}
if (t->turret.firing) {
flags |= 1;
}
if (t->led) {
flags |= 2;
}
fprintf(stdout, " [%d,%d,%.2f,%.2f,%d,%d],\n",
(int)(t->position[0]),
(int)(t->position[1]),
t->angle,
t->turret.current,
flags,
sensors);
}
}
fprintf(stdout, "],\n");
}
print_footer(stdout);
return 0;
}

View File

@ -114,7 +114,7 @@ function Tank(ctx, width, height, color, sensors) {
ctx.fillRect(-7, 4, 15, 5);
ctx.rotate(this.turret);
if (this.fire) {
ctx.fillStyle = ("rgba(68,204,68," + this.fire/5 +")");
ctx.fillStyle = ("rgba(128,128,255," + this.fire/5 + ")");
ctx.fillRect(0, -1, 45, 2);
this.fire -= 1;
} else {
@ -210,8 +210,8 @@ function start(game) {
}
}
//loop_id = setInterval(update, 66);
loop_id = setInterval(update, 200);
loop_id = setInterval(update, 66);
//loop_id = setInterval(update, 400);
if (fps) {
setInterval(update_fps, 1000);
}

View File

@ -7,8 +7,11 @@
void
test_run(struct tank *tank, void *unused)
{
tank_set_speed(tank, 61, 60);
tank_set_turret(tank, 0);
tank_set_speed(tank, -60, -61);
tank_set_turret(tank, tank->turret.desired + PI/15);
if (tank->sensors[0].triggered) {
tank_fire(tank);
}
}
void
@ -25,7 +28,7 @@ main(int argc, char *argv[])
int i;
game.size[0] = 600;
game.size[1] = 600;
game.size[1] = 200;
printf("[\n");
printf("[%d, %d, %d],\n",
@ -66,6 +69,11 @@ main(int argc, char *argv[])
mytanks[i].sensors[4].range = 100;
mytanks[i].sensors[4].turret = 1;
mytanks[i].sensors[5].angle = 0;
mytanks[i].sensors[5].width = PI*1.99;
mytanks[i].sensors[5].range = 80;
mytanks[i].sensors[5].turret = 0;
for (j = 0; j < TANK_MAX_SENSORS; j += 1) {
struct sensor *s = &(mytanks[i].sensors[j]);
@ -87,7 +95,7 @@ main(int argc, char *argv[])
printf("// Rounds\n");
printf("[\n");
for (i = 0; i < 200; i += 1) {
for (i = 0; i < 100; i += 1) {
int j;
tanks_run_turn(&game, mytanks, NTANKS);

12
trig.py
View File

@ -1,12 +0,0 @@
#! /usr/bin/python
import math
print "static float trig_cos_table[] = {"
for i in range(91):
r = (i * math.pi) / 180.0
cos = math.cos(r)
print ("%0f," % cos),
if 5 == i % 6:
print
print "};"