This commit is contained in:
Neale Pickett 2022-04-16 09:20:42 -06:00
commit b071f58a2d
16 changed files with 1127 additions and 448 deletions

3
.clang-format Normal file
View File

@ -0,0 +1,3 @@
BasedOnStyle: Chromium
ColumnLimit: 0
PointerAlignment: Right

View File

@ -1,5 +1,6 @@
FQBN = adafruit:samd:adafruit_trellis_m4
UF2_MOUNT = /mnt/chromeos/removable/TRELM4BOOT
UF2_MOUNT = /media/neale/TRELM4BOOT
ARDUINO_DIR = /opt/arduino-1.8.13
default: build/uilleann.ino.uf2
install: build/uilleann.ino.uf2
@ -21,11 +22,11 @@ build/%.bin: % *.cpp *.h
-core-api-version 10813 \
-fqbn $(FQBN) \
-hardware ~/.arduino15/packages \
-tools /app/Arduino/tools-builder \
-tools $(ARDUINO_DIR)/tools-builder \
-tools ~/.arduino15/packages \
-hardware /app/Arduino/hardware \
-hardware $(ARDUINO_DIR)/hardware \
-hardware ~/.arduino15/packages \
-built-in-libraries /app/Arduino/libraries \
-built-in-libraries $(ARDUINO_DIR)/libraries \
-libraries ~/Arduino/libraries \
-compile \
$<

View File

@ -50,7 +50,7 @@
#define ALG_DX9_2(feedback) \
{ \
{0, 1, 0, 0, 1}, \
{0, 0, 1, 1, 0}, \
{0, 0, 1, 1, 0}, \
{0, 0, 0, 0, 0}, \
{0, 0, 0, feedback, 0}, \
}

View File

@ -1,75 +1,91 @@
#define CCCC NOTE_CS5, NOTE_CS5, NOTE_CS5, NOTE_CS5
#define CCDD NOTE_CS5, NOTE_CS5, NOTE_D5, NOTE_D5
#define CDCD NOTE_CS5, NOTE_D5, NOTE_CS5, NOTE_D5
#define DDDD NOTE_D5, NOTE_D5, NOTE_D5, NOTE_D5
#define P 0x80
#pragma once
#include "tuning.h"
uint8_t uilleann_matrix[] = {
// Open Back D
NOTE_CS5, NOTE_CS5, NOTE_CS5, NOTE_D5, // OOO OO..
CCDD, // OOO OX..
CDCD, // OOO XO..
DDDD, // OOO XX..
CDCD, // OOX OO..
DDDD, // OOX OX..
CDCD, // OOX XO..
DDDD, // OOX XX..
CCDD, // OXO OO..
CCDD, // OXO OX..
DDDD, // OXO XO..
DDDD, // OXO XX..
DDDD, // OXX OO..
DDDD, // OXX OX..
DDDD, // OXX XO..
DDDD, // OXX XX..
CDCD, // XOO OO..
DDDD, // XOO OX..
CDCD, // XOO XO..
DDDD, // XOO XX..
CDCD, // XOX OO..
DDDD, // XOX OX..
CDCD, // XOX XO..
DDDD, // XOX XX..
DDDD, // XXO OO..
DDDD, // XXO OX..
DDDD, // XXO XO..
DDDD, // XXO XX..
DDDD, // XXX OO..
DDDD, // XXX OX..
NOTE_D5, NOTE_D5, NOTE_D5, NOTE_D5|P, // XXX XO..
DDDD, // XXX XX..
// Closed Back D
CCCC, // OOO OO...
NOTE_CS5, NOTE_CS5, NOTE_CS5, NOTE_CS5|P, // OOO OX..
CCCC, // OOO XO..
CCCC, // OOO XX..
CCCC, // OOX OO..
NOTE_CS5, NOTE_CS5|P, NOTE_CS5, NOTE_CS5|P, // OOX OX..
CCCC, // OOX XO..
CCCC, // OOX XX..
CCCC, // OXO OO..
NOTE_CS5, NOTE_CS5|P, NOTE_CS5, NOTE_CS5|P, // OXO OX..
CCCC, // OXO XO..
CCCC, // OXO XX..
NOTE_C5|P, NOTE_C5|P, NOTE_C5|P, NOTE_C5|P, // OXX OO..
NOTE_C5, NOTE_C5, NOTE_C5, NOTE_C5, // OXX OX..
NOTE_C5, NOTE_C5, NOTE_C5, NOTE_C5|P, // OXX XO..
NOTE_C5, NOTE_C5, NOTE_C5, NOTE_CS5, // OXX XX..
NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, // XOO OO..
NOTE_B4|P, NOTE_B4|P, NOTE_B4, NOTE_B4|P, // XOO OX..
NOTE_AS4, NOTE_B4, NOTE_AS4, NOTE_B4, // XOO XO..
NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, // XOO XX..
NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, // XOX OO..
NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, // XOX OX..
NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, // XOX XO..
NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, NOTE_B4|P, // XOX XX..
NOTE_A4, NOTE_A4, NOTE_A4|P, NOTE_A4, // XXO OO..
NOTE_A4|P, NOTE_A4|P, NOTE_A4|P, NOTE_A4|P, // XXO OX..
NOTE_GS4, NOTE_GS4|P, NOTE_A4, NOTE_A4, // XXO XO..
NOTE_A4|P, NOTE_A4|P, NOTE_A4|P, NOTE_A4, // XXO XX..
NOTE_G4, NOTE_G4, NOTE_G4|P, NOTE_G4, // XXX OO..
NOTE_G4|P, NOTE_G4|P, NOTE_G4|P, NOTE_G4|P, // XXX OX..
NOTE_FS4, NOTE_FS4, NOTE_F4, NOTE_FS4|P, // XXX XO..
NOTE_E4, NOTE_E4|P, NOTE_DS4, NOTE_D4, // XXX XX..
struct Fingering {
Note note;
bool alt; // Alternate fingering: sounds more choked
};
#define n(note) \
{ note, false }
#define P(note) \
{ note, true }
#define CCCC n(NOTE_Cs5), n(NOTE_Cs5), n(NOTE_Cs5), n(NOTE_Cs5)
#define CCDD n(NOTE_Cs5), n(NOTE_Cs5), n(NOTE_D5), n(NOTE_D5)
#define CDCD n(NOTE_Cs5), n(NOTE_D5), n(NOTE_Cs5), n(NOTE_D5)
#define DDDD n(NOTE_D5), n(NOTE_D5), n(NOTE_D5), n(NOTE_D5)
struct Fingering uilleann_matrix[] = {
// Open Back D
n(NOTE_Cs5), n(NOTE_Cs5), n(NOTE_Cs5), n(NOTE_D5), // OOO OO..
CCDD, // OOO OX..
CDCD, // OOO XO..
DDDD, // OOO XX..
CDCD, // OOX OO..
DDDD, // OOX OX..
CDCD, // OOX XO..
DDDD, // OOX XX..
CCDD, // OXO OO..
CCDD, // OXO OX..
DDDD, // OXO XO..
DDDD, // OXO XX..
DDDD, // OXX OO..
DDDD, // OXX OX..
DDDD, // OXX XO..
DDDD, // OXX XX..
CDCD, // XOO OO..
DDDD, // XOO OX..
CDCD, // XOO XO..
DDDD, // XOO XX..
CDCD, // XOX OO..
DDDD, // XOX OX..
CDCD, // XOX XO..
DDDD, // XOX XX..
DDDD, // XXO OO..
DDDD, // XXO OX..
DDDD, // XXO XO..
DDDD, // XXO XX..
DDDD, // XXX OO..
DDDD, // XXX OX..
n(NOTE_D5), n(NOTE_D5), n(NOTE_D5), P(NOTE_D5), // XXX XO..
DDDD, // XXX XX..
// Closed Back D
CCCC, // OOO OO...
n(NOTE_Cs5), n(NOTE_Cs5), n(NOTE_Cs5), P(NOTE_Cs5), // OOO OX..
CCCC, // OOO XO..
CCCC, // OOO XX..
CCCC, // OOX OO..
n(NOTE_Cs5), P(NOTE_Cs5), n(NOTE_Cs5), P(NOTE_Cs5), // OOX OX..
CCCC, // OOX XO..
CCCC, // OOX XX..
CCCC, // OXO OO..
n(NOTE_Cs5), P(NOTE_Cs5), n(NOTE_Cs5), P(NOTE_Cs5), // OXO OX..
CCCC, // OXO XO..
CCCC, // OXO XX..
P(NOTE_C5), P(NOTE_C5), P(NOTE_C5), P(NOTE_C5), // OXX OO..
n(NOTE_C5), n(NOTE_C5), n(NOTE_C5), n(NOTE_C5), // OXX OX..
n(NOTE_C5), n(NOTE_C5), n(NOTE_C5), P(NOTE_C5), // OXX XO..
n(NOTE_C5), n(NOTE_C5), n(NOTE_C5), n(NOTE_Cs5), // OXX XX..
n(NOTE_B4), n(NOTE_B4), n(NOTE_B4), n(NOTE_B4), // XOO OO..
P(NOTE_B4), P(NOTE_B4), n(NOTE_B4), P(NOTE_B4), // XOO OX..
n(NOTE_As4), n(NOTE_B4), n(NOTE_As4), n(NOTE_B4), // XOO XO..
n(NOTE_B4), n(NOTE_B4), n(NOTE_B4), n(NOTE_B4), // XOO XX..
P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), // XOX OO..
P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), // XOX OX..
P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), // XOX XO..
P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), P(NOTE_B4), // XOX XX..
n(NOTE_A4), n(NOTE_A4), P(NOTE_A4), n(NOTE_A4), // XXO OO..
P(NOTE_A4), P(NOTE_A4), P(NOTE_A4), P(NOTE_A4), // XXO OX..
n(NOTE_Gs4), P(NOTE_Gs4), n(NOTE_A4), n(NOTE_A4), // XXO XO..
P(NOTE_A4), P(NOTE_A4), P(NOTE_A4), n(NOTE_A4), // XXO XX..
n(NOTE_G4), n(NOTE_G4), P(NOTE_G4), n(NOTE_G4), // XXX OO..
P(NOTE_G4), P(NOTE_G4), P(NOTE_G4), P(NOTE_G4), // XXX OX..
n(NOTE_Fs4), n(NOTE_Fs4), n(NOTE_F4), P(NOTE_Fs4), // XXX XO..
n(NOTE_E4), P(NOTE_E4), n(NOTE_Ds4), n(NOTE_D4), // XXX XX..
};
inline Fingering FingeredNote(uint16_t keys) {
return uilleann_matrix[keys & 0xff];
}

73
main-play.h Normal file
View File

@ -0,0 +1,73 @@
#pragma once
void playDrones() {
for (int i = 0; i < NUM_DRONES; ++i) {
float pitch = tuning.GetPitch(NOTE_D3);
pitch /= 1 << i; // Take down the appropriate number of octaves
pitch *= (i - 1) / 1000; // Detune ever so AudioProcessorUsageMaxReset();
Drones[i].NoteOn(pitch);
}
}
void doPlay(bool forceDisplayUpdate) {
static Note last_note = NOTE_ZERO;
bool updateDisplay = forceDisplayUpdate;
if (updateDisplay) {
display.clearDisplay();
display.fillRect(0, 0, 2, 2, SSD1306_WHITE);
display.display();
}
if (pipe.Silent) {
Chanter.NoteOff();
} else {
// Calculate pitch, and glissando pitch
float pitch = tuning.GetPitch(pipe.CurrentNote);
float glissandoPitch = tuning.GetPitch(pipe.GlissandoNote);
// Bend pitch if fewer than 3 half steps away
if (abs(pipe.GlissandoNote - pipe.CurrentNote) < 3) {
float diff = glissandoPitch - pitch;
pitch = glissandoPitch - (diff * pipe.GlissandoPressure);
}
// Apply a low shelf filter if this is the alternate fingering
if (pipe.AltFingering) {
biquad1.setLowShelf(0, 2000, 0.2, 1);
} else {
biquad1.setHighShelf(0, 1000, 1.0, 1);
}
// We've figured out what pitch to play, now we can play it.
if (Chanter.playing) {
Chanter.SetPitch(pitch);
} else {
Chanter.NoteOn(pitch);
}
}
if (pipe.CurrentNote != last_note) {
updateDisplay = true;
}
#if 0
if (updateDisplay) {
// Look up the note name
const char *noteName = NoteName(pipe.CurrentNote);
if (pipe.Silent) {
noteName = "--";
updateDisplay = true;
}
display.clearDisplay();
display.setFont(&FreeSans9pt7b);
display.setCursor(0, 16);
display.print(noteName);
display.display();
last_note = pipe.CurrentNote;
}
#endif
}

192
main-setup.h Normal file
View File

@ -0,0 +1,192 @@
#pragma once
#define QUELL_DURATION 200
#define ADJ_TYPEMATIC_DELAY 500
#define ADJ_TYPEMATIC_REPEAT 33
const char *settingNames[4] = {"c", "r", "d", "*"};
// quellUntil can be set to give the user time to get their fingers off the continuous adjustment buttons.
unsigned long quellUntil = 0;
void quell(unsigned long ms) {
quellUntil = millis() + ms;
}
void quell() {
quell(QUELL_DURATION);
}
void setupVolume() {
Adjust volAdjust = pipe.ReadAdjust(2, 3, 0, ADJ_TYPEMATIC_REPEAT);
Adjust patchAdjust = pipe.ReadAdjust(0, 1, 0, 500);
for (int i = 0; i < 3; i++) {
int16_t x = 1;
int16_t y = i * 8;
display.setCursor(x, y);
if (pipe.Pressed(6 - i)) {
display.fillRect(x - 1, y, 8, 8, SSD1306_WHITE);
display.setTextColor(SSD1306_BLACK);
switch (volAdjust) {
case ADJUST_BOTH:
volume[i] = VOLUME_INITIAL;
quell();
break;
case ADJUST_UP:
case ADJUST_DOWN:
{
float vol = volume[i] + float(volAdjust)*0.02;
volume[i] = max(min(vol, 1.0), 0.0);
}
break;
default:
break;
}
switch (patchAdjust) {
case ADJUST_BOTH:
patch[i] = 0;
quell();
loadPatch(i);
break;
case ADJUST_UP:
case ADJUST_DOWN:
patch[i] = (patch[i] + PATCH_MAX + int(patchAdjust)) % PATCH_MAX;
loadPatch(i);
break;
default:
break;
}
mixL.gain(i, volume[i]);
mixR.gain(i, volume[i]);
} else {
display.setTextColor(SSD1306_WHITE);
}
display.print(settingNames[i]);
x += 7;
display.drawRect(x, y + 2, 32, 4, SSD1306_WHITE);
display.fillRect(x, y + 2, 32 * volume[i], 4, SSD1306_WHITE);
x += 34;
display.setTextColor(SSD1306_WHITE);
display.setCursor(x, y);
display.print(patch[i]);
display.print(" ");
display.print(Bank[patch[i]].name);
}
}
void setupTuning() {
Adjust noteAdjust = pipe.ReadAdjust(2, 3, ADJ_TYPEMATIC_DELAY, ADJ_TYPEMATIC_REPEAT);
Adjust pitchAdjust = pipe.ReadAdjust(0, 1, 0, ADJ_TYPEMATIC_REPEAT);
TuningSystem system = tuning.GetTuningSystem();
float freq = tuning.GetPitch(NOTE_D4);
Note note = NearestNote(freq);
if (noteAdjust != ADJUST_NONE) {
// Set up even temperament to pick a concert pitch
tuning.Setup(NOTE_A4, PITCH_CONCERT_A4, TUNINGSYSTEM_EQUAL);
switch (noteAdjust) {
case ADJUST_BOTH:
++system;
break;
case ADJUST_UP:
case ADJUST_DOWN:
note += int(noteAdjust);
freq = tuning.GetPitch(note);
break;
default:
break;
}
// Now retune
tuning.Setup(NOTE_D4, freq, system);
}
if (pitchAdjust != ADJUST_NONE) {
switch (pitchAdjust) {
case ADJUST_BOTH:
freq = PITCH_CONCERT_D4;
quell();
break;
case ADJUST_UP:
freq *= 1.001;
break;
case ADJUST_DOWN:
freq /= 1.001;
break;
default:
break;
}
tuning.Setup(NOTE_D4, freq);
note = NearestNote(freq);
}
display.setFont(&FreeSans9pt7b);
display.setCursor(0, 12);
display.print(NoteName(note));
display.setCursor(24, 12);
display.print(NoteOctave(note));
display.setCursor(48, 12);
display.print(freq);
display.setCursor(0, 27);
display.print(TuningSystemName(system));
}
void setupInfo() {
display.setFont(&FreeSans9pt7b);
display.setCursor(64, 18);
display.print("Setup");
display.setFont();
display.setTextSize(1);
display.setCursor(0, 16);
display.print("FC-1");
display.setCursor(0, 24);
display.print(buildDate);
display.setCursor(0, 0);
display.print("M:");
display.print(AudioMemoryUsageMax());
}
/** doSetup performs "setup mode" behavior for the pipe.
*
* Setup mode sets the following new meanings to the buttons:
*
* key: function [alternate]
* C: Alt
* B: Chanter
* A: Regulators
* G: Drones
* F: Up [+ coarse]
* E: Down [- coarse]
* E: + [+ fine]
* D: - [- fine]
*
*/
void doSetup() {
if (millis() < quellUntil) {
return;
}
// Draw setup indicator bar
display.clearDisplay();
display.fillRect(126, 0, 2, 32, SSD1306_WHITE);
display.setFont(0);
display.setTextSize(1);
display.setCursor(0, 0);
if (pipe.Pressed(7)) { // Volume
setupVolume();
} else if (pipe.Pressed(4)) {
display.print("fn3");
} else if (pipe.Pressed(5)) {
display.print("fn2");
} else if (pipe.Pressed(6)) { // Tuning
setupTuning();
} else {
setupInfo();
}
display.display();
}

View File

@ -1,41 +0,0 @@
#include <Arduino.h>
#include "notes.h"
const char *NoteNames[] {
"C ", "C#", "D ", "Eb", "E ", "F ", "F#", "G ", "Ab", "A ", "Bb", "B ",
};
float JustPitches[MaxNote + 1];
// Hat tip to Kyle Gann
// https://www.kylegann.com/tuning.html
void setupJustPitches(uint8_t baseNote, float basePitch) {
JustPitches[baseNote + 0] = basePitch * 1 / 1; // D
JustPitches[baseNote + 1] = basePitch * 16 / 15; // Eb
JustPitches[baseNote + 2] = basePitch * 9 / 8; // E
JustPitches[baseNote + 3] = basePitch * 6 / 5; // F
JustPitches[baseNote + 4] = basePitch * 5 / 4; // F#
JustPitches[baseNote + 5] = basePitch * 4 / 3; // G
JustPitches[baseNote + 6] = basePitch * 45 / 32; // Ab
JustPitches[baseNote + 7] = basePitch * 3 / 2; // A
JustPitches[baseNote + 8] = basePitch * 8 / 5; // Bb
JustPitches[baseNote + 9] = basePitch * 5 / 3; // B
JustPitches[baseNote + 10] = basePitch * 16 / 9; // C (fourth up from G)
JustPitches[baseNote + 11] = basePitch * 15 / 8; // C#
// Octaves
for (int note = baseNote; note < baseNote + 12; note++) {
for (int i = 1; i < 9; i++) {
int multiplier = 1<<i;
int shift = i*12;
int upNote = note + shift;
int dnNote = note - shift;
if (upNote <= MaxNote) {
JustPitches[upNote] = JustPitches[note] * multiplier;
}
if (dnNote >= 0) {
JustPitches[dnNote] = JustPitches[note] / multiplier;
}
}
}
}

21
notes.h
View File

@ -1,21 +0,0 @@
#pragma once
#define PITCH_D4 293.66
enum Notes {
NOTE_C0, NOTE_CS0, NOTE_D0, NOTE_DS0, NOTE_E0, NOTE_F0, NOTE_FS0, NOTE_G0, NOTE_GS0, NOTE_A0, NOTE_AS0, NOTE_B0,
NOTE_C1, NOTE_CS1, NOTE_D1, NOTE_DS1, NOTE_E1, NOTE_F1, NOTE_FS1, NOTE_G1, NOTE_GS1, NOTE_A1, NOTE_AS1, NOTE_B1,
NOTE_C2, NOTE_CS2, NOTE_D2, NOTE_DS2, NOTE_E2, NOTE_F2, NOTE_FS2, NOTE_G2, NOTE_GS2, NOTE_A2, NOTE_AS2, NOTE_B2,
NOTE_C3, NOTE_CS3, NOTE_D3, NOTE_DS3, NOTE_E3, NOTE_F3, NOTE_FS3, NOTE_G3, NOTE_GS3, NOTE_A3, NOTE_AS3, NOTE_B3,
NOTE_C4, NOTE_CS4, NOTE_D4, NOTE_DS4, NOTE_E4, NOTE_F4, NOTE_FS4, NOTE_G4, NOTE_GS4, NOTE_A4, NOTE_AS4, NOTE_B4,
NOTE_C5, NOTE_CS5, NOTE_D5, NOTE_DS5, NOTE_E5, NOTE_F5, NOTE_FS5, NOTE_G5, NOTE_GS5, NOTE_A5, NOTE_AS5, NOTE_B5,
NOTE_C6, NOTE_CS6, NOTE_D6, NOTE_DS6, NOTE_E6, NOTE_F6, NOTE_FS6, NOTE_G6, NOTE_GS6, NOTE_A6, NOTE_AS6, NOTE_B6,
NOTE_C7, NOTE_CS7, NOTE_D7, NOTE_DS7, NOTE_E7, NOTE_F7, NOTE_FS7, NOTE_G7, NOTE_GS7, NOTE_A7, NOTE_AS7, NOTE_B7,
NOTE_C8, NOTE_CS8, NOTE_D8, NOTE_DS8, NOTE_E8, NOTE_F8, NOTE_FS8, NOTE_G8, NOTE_GS8, NOTE_A8, NOTE_AS8, NOTE_B8,
};
const uint8_t MaxNote = NOTE_B8;
extern const char *NoteNames[];
extern float JustPitches[MaxNote + 1];
void setupJustPitches(uint8_t baseNote, float basePitch);

View File

@ -2,6 +2,7 @@
#pragma once
#include "algorithms.h"
#include "synth.h"
// Waveform, offset, multiplier, delay, attack, holdAmp, hold, decay, sustainAmp, release
FMPatch Bank[] = {
@ -60,3 +61,5 @@ FMPatch Bank[] = {
},
},
};
const int PATCH_MAX = sizeof(Bank) / sizeof(Bank[0]);

141
pipe.cpp Normal file
View File

@ -0,0 +1,141 @@
#include "pipe.h"
#include "fingering.h"
#include "tuning.h"
#define CLOSEDVAL 0x30
#define OPENVAL 0x70
#define GLISSANDO_STEPS (OPENVAL - CLOSEDVAL)
Pipe::Pipe() {
KeysLast = 0;
}
bool Pipe::Init() {
// Capacative touch sensor
if (!capSensor.begin(0x5A)) {
return false;
}
// Knee sensor
if (!kneeSensor.begin()) {
return false;
}
// Bag button
bagSensor.begin();
// This library takes the entire program out if you poll it 5-40 times without anything connected
bag_enabled = bagSensor.isConnected();
return true;
}
void Pipe::Update() {
uint8_t glissandoKeys = 0;
KeysLast = Keys;
Keys = 0;
// Read the bag state, if there's a bag.
// if there isn't a bag, don't try, or this library will crash the program.
if (bag_enabled) {
Bag = bagSensor.isPressed();
} else {
Bag = false;
}
// 0x6c is actually 8 bytes, but all 8 are always the same...
KneeClosedness = 255 - kneeSensor.readRange();
for (int i = 0; i < NUM_KEYS; ++i) {
uint16_t sensorReading = capSensor.filteredData(i);
uint16_t val = OPENVAL - min(max(sensorReading, CLOSEDVAL), OPENVAL);
KeyPressure[i] = val / float(GLISSANDO_STEPS);
// keys = all keys which are at least touched
// glissandoKeys = all keys which are fully closed
// The glissando operation computes the difference.
if (KeyPressure[i] > 0.0) {
bitSet(Keys, i);
}
if (KeyPressure[i] == 1.0) {
bitSet(glissandoKeys, i);
}
}
// Compute glissando amount
GlissandoPressure = 1.0;
for (int i = 0; i < 8; ++i) {
if (KeyPressure[i] > 0) {
GlissandoPressure = min(GlissandoPressure, KeyPressure[i]);
}
}
// Look up notes in the big table
struct Fingering f = FingeredNote(Keys);
struct Fingering gf = FingeredNote(glissandoKeys);
CurrentNote = f.note;
GlissandoNote = gf.note;
// Was the high bit set? That indicates "alternate fingering", which sounds different.
AltFingering = f.alt;
// If the bag is squished, jump up an octave
// But only if the left thumb is down!
if (Bag && (Keys & bit(7))) {
CurrentNote += NOTE_OCTAVE;
GlissandoNote += NOTE_OCTAVE;
}
// All keys closed + knee = no sound
Silent = ((KneeClosedness > 240) && (Keys == 0xff));
}
bool Pipe::Pressed(uint8_t key) {
return bitRead(Keys, key);
}
bool Pipe::JustPressed(uint8_t key) {
if (bitRead(Keys, key)) {
return !bitRead(KeysLast, key);
}
return false;
}
bool Pipe::typematicEvent(uint8_t key, uint16_t delay, uint16_t repeat) {
if (Pressed(key)) {
unsigned long now = millis();
if (JustPressed(key)) {
nextRepeat[key] = now + max(delay, repeat);
return true;
}
if (now >= nextRepeat[key]) {
nextRepeat[key] = now + repeat;
return true;
}
}
return false;
}
Adjust Pipe::ReadAdjust(uint8_t keyUp, uint8_t keyDown, uint16_t delay, uint16_t repeat) {
bool eventUp = typematicEvent(keyUp, delay, repeat);
bool eventDown = typematicEvent(keyDown, delay, repeat);
if (Pressed(keyUp) && Pressed(keyDown)) {
unsigned long nr = max(nextRepeat[keyUp], nextRepeat[keyDown]);
nextRepeat[keyUp] = nr;
nextRepeat[keyDown] = nr;
}
if (eventUp && eventDown) {
return ADJUST_BOTH;
} else if (eventUp) {
return ADJUST_UP;
} else if (eventDown) {
return ADJUST_DOWN;
}
return ADJUST_NONE;
}

78
pipe.h Normal file
View File

@ -0,0 +1,78 @@
#pragma once
#include <Adafruit_MPR121.h>
#include <Adafruit_VL6180X.h>
#include <SparkFun_Qwiic_Button.h>
#include <stdint.h>
#include "tuning.h"
#define NUM_KEYS 12
enum Adjust {
ADJUST_DOWN = -1,
ADJUST_NONE = 0,
ADJUST_UP = 1,
ADJUST_BOTH,
};
class Pipe {
public:
// kneeClosedness indicates how "closed" the knee sensor is. 0 = wide open.
uint8_t KneeClosedness;
// keys are which keys are being pressed.
uint16_t Keys;
uint16_t KeysLast;
float KeyPressure[NUM_KEYS];
// note holds the note being played, according to the fingering chart.
Note CurrentNote;
// glissandoNote is the note that would be played if partially open keys were fully open.
Note GlissandoNote;
// glissandoPressure is how "closed" the holes are in the direction away from the glissandoNote.
float GlissandoPressure;
// silent is true if all keys and the knee are closed.
bool Silent;
// bag is true if the bag is being squished.
bool Bag;
// altFingering is true if the "alternate fingering" is being played.
// This should sound different than the standard fingering.
bool AltFingering;
Pipe();
// Init initializes everything.
//
// Returns true if it all worked. You can run it again if it didn't.
bool Init();
// Update reads sensors and updates pipe state.
//
// It should be run once per loop.
void Update();
// Pressed returns whether the given key is pressed.
bool Pressed(uint8_t key);
// JustPressed returns whether the given key was just pressed.
bool JustPressed(uint8_t key);
// ReadAdjust returns the input for two keys paired as up/down.
//
// delay is the number of milliseconds to wait before repeating a key
// repeat is the number of milliseconds to wait between repeated keystrokes
Adjust ReadAdjust(uint8_t upKey, uint8_t downKey, uint16_t delay, uint16_t repeat);
private:
Adafruit_MPR121 capSensor;
Adafruit_VL6180X kneeSensor;
QwiicButton bagSensor;
bool bag_enabled;
unsigned long nextRepeat[NUM_KEYS];
bool typematicEvent(uint8_t key, uint16_t delay, uint16_t repeat);
};

View File

@ -1,47 +1,55 @@
#include "synth.h"
#include "synth_waveform.h"
void FMVoiceLoadPatch(FMVoice *v, FMPatch *p) {
void FMVoice::LoadPatch(FMPatch *p) {
bool playing = this->playing;
float pitch = this->pitch;
NoteOff();
for (int i=0; i<NUM_OPERATORS; i++) {
FMOperator op = p->operators[i];
v->oscillators[i].frequencyModulation(1);
v->oscillators[i].begin(op.waveform);
v->envelopes[i].delay(op.delayTime);
v->envelopes[i].attack(op.attackTime);
v->oscillators[i].amplitude(op.holdAmplitude);
v->envelopes[i].hold(op.holdTime);
v->envelopes[i].decay(op.decayTime);
v->envelopes[i].sustain(op.sustainAmplitude / op.holdAmplitude);
v->envelopes[i].release(op.releaseTime);
this->oscillators[i].frequencyModulation(1);
this->oscillators[i].begin(op.waveform);
this->envelopes[i].delay(op.delayTime);
this->envelopes[i].attack(op.attackTime);
this->oscillators[i].amplitude(op.holdAmplitude);
this->envelopes[i].hold(op.holdTime);
this->envelopes[i].decay(op.decayTime);
this->envelopes[i].sustain(op.sustainAmplitude / op.holdAmplitude);
this->envelopes[i].release(op.releaseTime);
// This feels wasteful 🙁
for (int j=0; j<NUM_OPERATORS; j++) {
v->mixers[i].gain(j, p->gains[i][j]);
this->mixers[i].gain(j, p->gains[i][j]);
}
v->outputMixer.gain(i, p->gains[i][NUM_OPERATORS]);
this->outputMixer.gain(i, p->gains[i][NUM_OPERATORS]);
}
v->patch = p;
}
void FMVoiceSetPitch(FMVoice *v, float freq) {
for (int i=0; i<4; i++) {
FMOperator op = v->patch->operators[i];
v->oscillators[i].frequency(op.offset + (freq * op.multiplier));
this->patch = p;
if (playing) {
NoteOn(pitch);
}
}
void FMVoiceNoteOn(FMVoice *v, float freq) {
FMVoiceSetPitch(v, freq);
void FMVoice::SetPitch(float freq) {
for (int i=0; i<4; i++) {
v->envelopes[i].noteOn();
FMOperator op = this->patch->operators[i];
this->oscillators[i].frequency(op.offset + (freq * op.multiplier));
}
v->playing = true;
this->pitch = freq;
}
void FMVoiceNoteOff(FMVoice *v) {
void FMVoice::NoteOn(float freq) {
SetPitch(freq);
for (int i=0; i<4; i++) {
v->envelopes[i].noteOff();
this->envelopes[i].noteOn();
}
v->playing = false;
this->playing = true;
}
void FMVoice::NoteOff() {
for (int i=0; i<4; i++) {
this->envelopes[i].noteOff();
}
this->playing = false;
}

89
synth.h
View File

@ -73,21 +73,66 @@ typedef struct FMOperator {
* can be accomplished by patching an operator into itself.
*/
typedef struct FMPatch {
char *name;
const char *name;
float gains[NUM_OPERATORS][NUM_OPERATORS+1];
FMOperator operators[NUM_OPERATORS];
} FMPatch;
/** FMVoice sets up all the Audio objects for a voice.
*/
typedef struct FMVoice {
AudioMixer4 mixers[NUM_OPERATORS];
AudioSynthWaveformModulated oscillators[NUM_OPERATORS];
AudioEffectEnvelope envelopes[NUM_OPERATORS];
AudioMixer4 outputMixer;
FMPatch *patch;
bool playing;
} FMVoice;
class FMVoice {
public:
/** LoadPatch loads a patch into a voice.
*/
void LoadPatch(FMPatch *p);
/** SetPitch sets the pitch (Hz) of a voice.
*
* This does not signal the envelope in any way.
* You would use this for a glissando, portamento, or pitch bend.
* In my bagpipe, this prevents "reed noise" when changing notes.
*/
void SetPitch(float pitch);
/** GetPitch returns the pitch (Hz) of a voice.
*/
float GetPitch();
/** SetModulation sets the modulation amount of a voice.
*
* What this means depends on the loaded patch.
* For a "normal" bagpipe patch, this would adjust the intensity of
* of a filter, or set the level of an oscillator.
* In an old-school keyboard patch, this would set the
* intensity of a Low Frequency Oscillator to set a vibrato.
*/
void setModulation(float level);
/** NoteOn sets the pitch (Hz) of a voice, and starts in playing.
*
* This tells the envelope generators to begin.
* On a piano, this is what you would use when a key is pressed.
* In my bagpipe, this triggers "reed noise".
*/
void NoteOn(float pitch);
/** NoteOff stops a note from playing.
*
* This turns the voice "off" by shutting down all the envelope generators.
* On a piano, this is what you would use when a key is released.
* In my bagpipe, this corresponds to all holes being closed.
*/
void NoteOff();
AudioMixer4 mixers[NUM_OPERATORS];
AudioSynthWaveformModulated oscillators[NUM_OPERATORS];
AudioEffectEnvelope envelopes[NUM_OPERATORS];
AudioMixer4 outputMixer;
FMPatch *patch;
float pitch;
bool playing;
};
/** FMOperatorWiring outputs AudioConnection initializers to wire one FM Operator
*/
@ -108,30 +153,4 @@ typedef struct FMVoice {
FMOperatorWiring(name, 2), \
FMOperatorWiring(name, 3)
/** FMVoiceLoadPatch loads a patch into a voice.
*/
void FMVoiceLoadPatch(FMVoice *v, FMPatch *p);
/** FMVoiceSetPitch sets the pitch (Hz) of a voice.
*
* This does not signal the envelope in any way.
* You would use this for a glissando, portamento, or pitch bend.
* In my bagpipe, this prevents "reed noise" when changing notes.
*/
void FMVoiceSetPitch(FMVoice *v, float pitch);
/** FMVoiceNoteOn sets the pitch (Hz) of a voice, and starts in playing.
*
* This tells the envelope generators to begin.
* On a piano, this is what you would use when a key is pressed.
* In my bagpipe, this triggers "reed noise".
*/
void FMVoiceNoteOn(FMVoice *v, float pitch);
/** FMVoiceNoteOff stops a note from playing.
*
* This turns the voice "off" by shutting down all the envelope generators.
* On a piano, this is what you would use when a key is released.
* In my bagpipe, this corresponds to all holes being closed.
*/
void FMVoiceNoteOff(FMVoice *v);

140
tuning.cpp Normal file
View File

@ -0,0 +1,140 @@
#include "tuning.h"
#include <math.h>
Tuning::Tuning(Note base, float pitch, TuningSystem system) {
Setup(base, pitch, system);
}
Tuning::Tuning(Note base, float pitch) {
Tuning(base, pitch, TUNINGSYSTEM_JUST);
}
// I like just Intonation.
Tuning::Tuning() {
Tuning(NOTE_D4, PITCH_CONCERT_D4, TUNINGSYSTEM_JUST);
}
Note Tuning::GetBaseNote() {
return baseNote;
}
void Tuning::SetTuningSystem(TuningSystem system) {
Setup(baseNote, GetPitch(baseNote), system);
}
TuningSystem Tuning::GetTuningSystem() {
return system;
}
// setupOctaves computes the entire tuning frequency chart.
//
// You must call this after setting a full octave chromatic scale, rooted at
// base.
void Tuning::setupOctaves(Note base) {
int multiplier = 1;
for (Note octave = NOTE_ZERO; octave < NOTE_MAX; octave += NOTE_OCTAVE) {
for (Note note = base; note < base + NOTE_OCTAVE; note += NOTE_SEMITONE) {
Note upNote = note + octave;
Note dnNote = note - octave;
if (upNote < NOTE_MAX) {
pitches[upNote] = pitches[note] * multiplier;
}
if (dnNote >= NOTE_ZERO) {
pitches[dnNote] = pitches[note] / multiplier;
}
}
multiplier <<= 1;
}
}
// setupEqual sets an even-temperament chromatic scale rooted at base
void Tuning::setupEqual(Note base, float pitch) {
pitches[base] = pitch;
for (int i = 1; i < 12; i++) {
pitches[base + i] = pitches[base + i - 1] * TET_SEMITONE_MULTIPLIER;
}
}
// setupJust sets a just-temperament chromatic scale rooted at base
void Tuning::setupJust(Note base, float pitch) {
// Diatonic scale
pitches[base + 0] = pitch * 1 / 1; // Unison
pitches[base + 2] = pitch * 9 / 8; // Second
pitches[base + 4] = pitch * 5 / 4; // Third
pitches[base + 5] = pitch * 4 / 3; // Fourth
pitches[base + 7] = pitch * 3 / 2; // Fifth
pitches[base + 9] = pitch * 5 / 3; // Sixth
pitches[base + 11] = pitch * 15 / 8; // Seventh
// I got this off various Wikipedia pages.
// The main thing here is that the minor seventh works out to be a diatonic
// fourth up from the fourth computed above, since the music I want to play
// frequently wants to play G major on a D major instrument
pitches[base + 1] = pitch * 16 / 15; // min2
pitches[base + 3] = pitch * 6 / 5; // min3
pitches[base + 6] = pitch * 10 / 7; // dim5
pitches[base + 8] = pitch * 8 / 5; // min6
pitches[base + 10] = pitch * 16 / 9; // min7 = fourth + fourth
}
void Tuning::Setup(Note base, float pitch, TuningSystem system) {
this->baseNote = base;
this->system = system;
switch (system) {
case TUNINGSYSTEM_EQUAL:
setupEqual(base, pitch);
break;
case TUNINGSYSTEM_JUST:
default:
setupJust(base, pitch);
break;
}
setupOctaves(base);
}
void Tuning::Setup(Note base, float pitch) {
Setup(base, pitch, system);
}
float Tuning::GetPitch(Note note) {
return pitches[note];
}
Note NearestNote(float pitch) {
return Note(round(log(pitch / PITCH_CONCERT_C0) / log(TET_SEMITONE_MULTIPLIER)));
}
const char *noteNames[]{
"C",
"C#",
"D",
"Eb",
"E",
"F",
"F#",
"G",
"Ab",
"A",
"Bb",
"B",
};
const char *NoteName(Note note) {
return noteNames[note % 12];
}
int NoteOctave(Note note) {
return int(note / NOTE_OCTAVE);
}
const char *TuningSystemName(TuningSystem system) {
switch (system) {
case TUNINGSYSTEM_EQUAL:
return "Equal";
case TUNINGSYSTEM_JUST:
default:
return "Just";
}
}

130
tuning.h Normal file
View File

@ -0,0 +1,130 @@
#pragma once
#include <stdint.h>
enum TuningSystem {
TUNINGSYSTEM_JUST,
TUNINGSYSTEM_EQUAL,
TUNINGSYSTEM_MAX = TUNINGSYSTEM_EQUAL,
};
// Twelve-Tone Note (one chromatic scale)
#define NOTE_TT(o) NOTE_C##o, NOTE_Cs##o, NOTE_Db##o = NOTE_Cs##o, \
NOTE_D##o, NOTE_Ds##o, NOTE_Eb##o = NOTE_Ds##o, \
NOTE_E##o, \
NOTE_F##o, NOTE_Fs##o, NOTE_Gb##o = NOTE_Fs##o, \
NOTE_G##o, NOTE_Gs##o, NOTE_Ab##o = NOTE_Gs##o, \
NOTE_A##o, NOTE_As##o, NOTE_Bb##o = NOTE_As##o, \
NOTE_B##o
enum Note {
NOTE_TT(0),
NOTE_TT(1),
NOTE_TT(2),
NOTE_TT(3),
NOTE_TT(4),
NOTE_TT(5),
NOTE_TT(6),
NOTE_TT(7),
NOTE_TT(8),
NOTE_ZERO = 0,
NOTE_SEMITONE = 1,
NOTE_WHOLETONE = 2,
NOTE_OCTAVE = NOTE_C1,
NOTE_MAX = NOTE_B8,
};
#define PITCH_CONCERT_C0 16.35
#define PITCH_CONCERT_A4 440.00
#define PITCH_CONCERT_D4 293.66
// Twelvetone Equal Temperament semitone multiplier
// Take any frequency and multiply it by this magic number to get a semitone higher!
// Divide to get a semitone lower!
// This is an approximation of exp(2, 1/12),
// which was worked out in around the 1500s.
#define TET_SEMITONE_MULTIPLIER 1.059463
class Tuning {
public:
// name contains the name of the current tuning system
const char *name;
Tuning(Note base, float pitch, TuningSystem system);
Tuning(Note base, float pitch);
Tuning();
void Setup(Note base, float pitch, TuningSystem system);
void Setup(Note base, float pitch);
void SetTuningSystem(TuningSystem system);
TuningSystem GetTuningSystem();
Note GetBaseNote();
float GetPitch(Note note);
private:
TuningSystem system;
Note baseNote;
float pitches[NOTE_MAX];
void setupOctaves(Note base);
void setupJust(Note base, float pitch);
void setupEqual(Note base, float pitch);
};
// NearestNote returns the note nearest to pitch.
Note NearestNote(float pitch);
// NoteOctave returns which octave the note is in
int NoteOctave(Note note);
// NoteName returns the name of a note (without octave).
const char *NoteName(Note note);
// TuningSystemName returns the name of a tuning system.
const char *TuningSystemName(TuningSystem system);
// Make notes support some arithmetic
inline Note toNote(int a) {
if (a < NOTE_ZERO) {
return NOTE_ZERO;
} else if (a > NOTE_MAX) {
return NOTE_MAX;
} else {
return Note(a);
}
}
inline Note operator+(const Note &a, const int b) {
return toNote(int(a) + b);
}
inline Note operator+(const Note &a, const Note b) {
return a + int(b);
}
inline Note &operator+=(Note &a, const int b) {
return a = a + b;
}
inline Note &operator+=(Note &a, const Note b) {
return a = a + b;
}
inline Note &operator++(Note &a) {
return a += NOTE_SEMITONE;
}
inline Note operator-(const Note a, const Note b) {
return toNote(int(a) - int(b));
}
inline Note &operator-=(Note &a, const Note b) {
return a = a - b;
}
inline Note &operator--(Note &a) {
return a -= NOTE_SEMITONE;
}
inline Note operator*(const Note a, const int b) {
return toNote(int(a) * b);
}
inline int operator/(const Note a, const int b) {
return int(a) / b;
}
inline int operator/(const Note a, const Note b) {
return int(a) / b;
}
inline TuningSystem operator++(TuningSystem &a) {
return a = TuningSystem((int(a) + 1) % int(TUNINGSYSTEM_MAX + 1));
}

View File

@ -1,303 +1,240 @@
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <Audio.h>
#include <Wire.h>
#include <Adafruit_NeoTrellisM4.h>
#include <SFE_MicroOLED.h>
#include <SparkFun_Qwiic_Button.h>
#include <Adafruit_MPR121.h>
#include "synth.h"
#include <Fonts/FreeSans9pt7b.h>
#include <stdio.h>
#include "patches.h"
#include "notes.h"
#include "fingering.h"
#include "pipe.h"
#include "synth.h"
#include "tuning.h"
//#define DEBUG
#define KNEE_OFFSET 0
#define KEY_OFFSET 2
const char *buildDate = __DATE__;
#if defined(ADAFRUIT_TRELLIS_MAdafruit_SSD1306EXPRESS)
#include <Adafruit_NeoTrellisM4.h>
Adafruit_NeoTrellisM4 trellis; // = Adafruit_NeoTrellisM4();
#endif
Pipe pipe;
Tuning tuning = Tuning(NOTE_D4, PITCH_CONCERT_D4, TUNINGSYSTEM_JUST);
Adafruit_SSD1306 display(128, 32, &Wire, -1);
// Settings
#define VOLUME_INITIAL 0.8
uint8_t patch[4] = {0};
float volume[5] = {VOLUME_INITIAL, VOLUME_INITIAL, VOLUME_INITIAL, VOLUME_INITIAL, 0.5};
// Pipes
#define NUM_DRONES 3
#define NUM_REGULATORS 3
FMVoice Chanter;
FMVoice Drones[3];
FMVoice Regulators[3];
FMVoice Drones[NUM_DRONES];
FMVoice Regulators[NUM_REGULATORS];
AudioFilterBiquad biquad1;
AudioMixer4 mixDrones;
AudioMixer4 mixRegulators;
AudioMixer4 mixL;
AudioMixer4 mixR;
AudioOutputAnalogStereo dacs1;
AudioFilterBiquad biquad1;
AudioMixer4 mixDrones;
AudioMixer4 mixRegulators;
AudioMixer4 mixL;
AudioMixer4 mixR;
AudioSynthNoiseWhite noise;
AudioSynthNoiseWhite debug;
#if defined(ADAFRUIT_TRELLIS_M4_EXPRESS)
AudioOutputAnalogStereo out1;
#else
AudioOutputI2S out1;
#endif
AudioControlSGTL5000 sgtl5000;
AudioConnection FMVoicePatchCords[] = {
{debug, 0, mixR, 3}, // Don't know why, but the first one is ignored
{debug, 0, mixL, 3},
{noise, 0, mixL, 3},
{noise, 0, mixR, 3},
{mixL, 0, dacs1, 0},
{mixR, 0, dacs1, 1},
{Chanter.outputMixer, 0, biquad1, 0},
{biquad1, 0, mixL, 0},
{biquad1, 0, mixR, 0},
{Chanter.outputMixer, 0, biquad1, 0},
{biquad1, 0, mixL, 0},
{biquad1, 0, mixR, 0},
{Drones[0].outputMixer, 0, mixDrones, 0},
{Drones[1].outputMixer, 0, mixDrones, 1},
{Drones[2].outputMixer, 0, mixDrones, 2},
{mixDrones, 0, mixL, 1},
{mixDrones, 0, mixR, 1},
{Drones[0].outputMixer, 0, mixDrones, 0},
{Drones[1].outputMixer, 0, mixDrones, 1},
{Drones[2].outputMixer, 0, mixDrones, 2},
{mixDrones, 0, mixL, 1},
{mixDrones, 0, mixR, 1},
{Regulators[0].outputMixer, 0, mixRegulators, 0},
{Regulators[1].outputMixer, 0, mixRegulators, 1},
{Regulators[2].outputMixer, 0, mixRegulators, 2},
{mixRegulators, 0, mixL, 2},
{mixRegulators, 0, mixR, 2},
{Regulators[0].outputMixer, 0, mixRegulators, 0},
{Regulators[1].outputMixer, 0, mixRegulators, 1},
{Regulators[2].outputMixer, 0, mixRegulators, 2},
{mixRegulators, 0, mixL, 2},
{mixRegulators, 0, mixR, 2},
{mixL, 0, out1, 0},
{mixR, 0, out1, 1},
FMVoiceWiring(Chanter),
FMVoiceWiring(Drones[0]),
FMVoiceWiring(Drones[1]),
FMVoiceWiring(Drones[2]),
FMVoiceWiring(Drones[3]),
FMVoiceWiring(Regulators[0]),
FMVoiceWiring(Regulators[1]),
FMVoiceWiring(Regulators[2]),
FMVoiceWiring(Regulators[3]),
FMVoiceWiring(Chanter),
FMVoiceWiring(Drones[0]),
FMVoiceWiring(Drones[1]),
FMVoiceWiring(Drones[2]),
FMVoiceWiring(Regulators[0]),
FMVoiceWiring(Regulators[1]),
FMVoiceWiring(Regulators[2]),
};
int currentPatch = 0;
void blink(bool forever) {
for (;;) {
digitalWrite(LED_BUILTIN, true);
delay(200);
digitalWrite(LED_BUILTIN, false);
delay(200);
if (!forever) {
return;
}
}
}
Adafruit_MPR121 cap = Adafruit_MPR121();
Adafruit_NeoTrellisM4 trellis = Adafruit_NeoTrellisM4();
MicroOLED oled(9, 1);
QwiicButton bag;
void diag(const char *fmt, ...) {
va_list args;
char s[80];
va_start(args, fmt);
vsnprintf(s, sizeof(s) - 1, fmt, args);
va_end(args);
display.clearDisplay();
display.drawRect(124, 16, 4, 16, SSD1306_WHITE);
display.setTextColor(SSD1306_WHITE);
display.setFont();
display.setTextSize(1);
display.setCursor(56, 24);
display.print(buildDate);
#if 0
display.setCursor(0, 16);
display.print(fn);
display.print(":");
display.print(lineno);
#endif
display.setCursor(0, 0);
display.print(s);
display.display();
}
// The right way to do this would be to make a Uilleann object,
// and pass that around.
// The Auido library makes this sort of a pain,
// and honestly, is anybody other than me going to use this?
#include "main-play.h"
#include "main-setup.h"
void setup() {
setupJustPitches(NOTE_D4, PITCH_D4);
// PREPARE TO BLINK
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, true);
// Wire.begin needs a moment
delay(100);
// Set up I2C. Apparently this needs a bit of startup delay.
Wire.begin();
// Initialize OLED display
oled.begin();
oled.clear(ALL);
// Initialize display
if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3c)) {
blink(true);
}
digitalWrite(LED_BUILTIN, false);
diag("Hello!");
// Initialize bag
bag.begin();
// Initialize the Trellis
#if defined(ADAFRUIT_TRELLIS_M4_EXPRESS)
diag("Trellis...");
trellis.begin();
#endif
// Initialize touch sensor
bool blink = true;
while (!cap.begin(0x5A)) {
oled.clear(PAGE);
oled.setCursor(0, 0);
oled.print("No Pipe?");
oled.display();
trellis.setPixelColor(0, blink?0xff6666:0);
blink = !blink;
delay(200);
diag("Pipe...");
while (!pipe.Init()) {
diag("Pipe connected?");
blink(false);
}
// Set aside some memory for the audio library
diag("Audio...");
AudioMemory(120);
// initialize tunables
updateTunables(3, 0);
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
sgtl5000.enable();
sgtl5000.volume(volume[4]);
// Turn on drones
for (int i=0; i<3; i++) {
float detune = (1-i) * 0.002;
FMVoiceLoadPatch(&Drones[i], &Bank[0]);
FMVoiceNoteOn(&Drones[i], JustPitches[NOTE_D4 - 12*i] * (1 + detune));
}
diag("Synth...");
loadPatch(0);
loadPatch(1);
loadPatch(2);
noise.amplitude(1.0);
diag("Mixer...");
// Turn on all mixer channels
for (int i=0; i<4; i++) {
mixL.gain(i, 0.5);
mixR.gain(i, 0.6);
for (int i = 0; i < 4; i++) {
mixL.gain(i, volume[i]);
mixR.gain(i, volume[i]);
}
debug.amplitude(0.1);
mixL.gain(3, 0);
mixR.gain(3, 0);
for (int i = 0; i < NUM_REGULATORS; ++i) {
mixRegulators.gain(i, 1);
}
for (int i = 0; i < NUM_DRONES; ++i) {
mixDrones.gain(i, 1);
}
biquad1.setNotch(0, PITCH_CONCERT_A4, 0.001);
diag("Drones...");
playDrones();
diag("Done!");
display.dim(true);
}
#define BUTTON_UP 0
#define BUTTON_DOWN 8
#define BUTTON_PITCH 24
#define BUTTON_VOLUME 25
void loadPatch(uint8_t where) {
FMPatch *p = &Bank[where];
#define INIT_PITCH_ADJUST 0
#define INIT_GAIN 0.7
#define INIT_PATCH 0
int16_t pitchAdjust;
float chanterGain;
int patch;
void updateTunables(uint8_t buttons, int note) {
// Pitch adjust if playing A
if (!note || (note == NOTE_A4)) {
switch (buttons) {
case 3:
pitchAdjust = INIT_PITCH_ADJUST;
break;
case 2:
pitchAdjust += 4;
switch (where) {
case 0:
Chanter.LoadPatch(p);
break;
case 1:
pitchAdjust -= 4;
break;
}
}
float adj = pow(2, pitchAdjust / 32768.0);
setupJustPitches(NOTE_D4, PITCH_D4*adj);
trellis.setPixelColor(BUTTON_PITCH, trellis.ColorHSV(uint16_t(pitchAdjust), 255, 80));
if (!note || (note == NOTE_G4)) {
// Volume adjust if playing G
switch (buttons) {
case 3:
chanterGain = INIT_GAIN;
for (int i = 0; i < NUM_REGULATORS; ++i) {
Regulators[i].LoadPatch(p);
}
break;
case 2:
chanterGain = min(chanterGain+0.005, 1.0);
for (int i = 0; i < NUM_DRONES; ++i) {
Drones[i].LoadPatch(p);
}
break;
case 1:
chanterGain = max(chanterGain-0.005, 0.0);
default:
break;
}
}
for (int i=0; i<3; i++) {
mixL.gain(i, chanterGain);
mixR.gain(i, chanterGain);
}
trellis.setPixelColor(BUTTON_VOLUME, trellis.ColorHSV(uint16_t(chanterGain * 65535), 255, 80));
if (!note || (note == NOTE_CS5)) {
if (buttons == 3) {
patch = INIT_PATCH;
} else if (trellis.justPressed(BUTTON_DOWN)) {
patch -= 1;
} else if (trellis.justPressed(BUTTON_UP)) {
patch += 1;
}
// wrap
int bankSize = sizeof(Bank) / sizeof(Bank[0]);
patch = (patch + bankSize) % bankSize;
FMPatch *p = &Bank[patch];
FMVoiceLoadPatch(&Chanter, p);
oled.clear(PAGE);
oled.setFontType(0);
oled.setCursor(0, 0);
oled.print(p->name);
oled.setCursor(0, 10);
oled.print("Patch ");
oled.print(patch);
oled.display();
}
}
const uint8_t CLOSEDVAL = 0x30;
const uint8_t OPENVAL = 0x70;
const uint8_t GLISSANDO_STEPS = OPENVAL - CLOSEDVAL;
bool playing = false;
void loop() {
uint8_t keys = 0;
uint8_t note;
uint8_t glissandoKeys = 0;
uint8_t glissandoNote;
float glissandoOpenness = 0;
bool silent = false;
bool knee = cap.filteredData(KNEE_OFFSET) < CLOSEDVAL;
uint8_t buttons = trellis.isPressed(BUTTON_DOWN)?1:0 | trellis.isPressed(BUTTON_UP)?2:0;
static bool upSetting = true; // GET IT?
pipe.Update();
#if defined(ADAFRUIT_TRELLIS_M4_EXPRESS)
trellis.tick();
#endif
for (int i = 0; i < 8; i++) {
uint16_t val = max(cap.filteredData(i+KEY_OFFSET), CLOSEDVAL);
float openness = ((val - CLOSEDVAL) / float(GLISSANDO_STEPS));
// keys = all keys which are at least touched
// glissandoKeys = all keys which are fully closed
// The glissando operation computes the difference.
if (openness < 1.0) {
glissandoOpenness = max(glissandoOpenness, openness);
bitSet(keys, i);
if (openness == 0.0) {
bitSet(glissandoKeys, i);
}
}
// print key states
//trellis.setPixelColor(7 - i, trellis.ColorHSV(65536/12, 255, 120*openness));
trellis.setPixelColor(7 - i, trellis.ColorHSV(22222*openness, 255, 40));
}
note = uilleann_matrix[keys];
glissandoNote = uilleann_matrix[glissandoKeys];
bool alt = note & 0x80;
bool galt = glissandoNote & 0x80;
note = note & 0x7f;
glissandoNote = glissandoNote & 0x7f;
// All keys closed + knee = no sound
if (knee) {
if (keys == 0xff) {
silent = true;
// If we're infinitely (for the sensor) off the knee,
// we might be in setup mode.
if (pipe.KneeClosedness == 0) {
// We only enter into setup mode if no keys are pressed.
// This hopefully avoids accidentally entering setup while playing.
// Like say you're playing a jaunty tune and suddenly there's an earthquake.
// You ought to be able to finish the tune off before your pipe goes into setup mode.
if (upSetting || (pipe.Keys == 0)) {
doSetup();
upSetting = true;
return;
}
}
// Jump octave if the bag is squished
//bag = !digitalRead(BAG);
if (bag.isPressed()) {
if (keys & bit(7)) {
note += 12;
glissandoNote += 12;
}
}
// Read some trellis button states
if (buttons) {
updateTunables(buttons, note);
}
if (silent) {
FMVoiceNoteOff(&Chanter);
} else {
// Calculate pitch, and glissando pitch
uint16_t pitch = JustPitches[note];
uint16_t glissandoPitch = JustPitches[glissandoNote];
if (alt) {
biquad1.setLowShelf(0, 2000, 0.2, 1);
} else {
biquad1.setHighShelf(0, 1000, 1.0, 1);
}
// Bend pitch if fewer than 3 half steps away
if (abs(glissandoNote - note) < 3) {
float diff = glissandoPitch - pitch;
pitch += diff * glissandoOpenness;
}
if (Chanter.playing) {
FMVoiceSetPitch(&Chanter, pitch);
} else {
FMVoiceNoteOn(&Chanter, pitch);
}
}
doPlay(upSetting);
upSetting = false;
}