wallart/wallart.ino

256 lines
5.4 KiB
C++

#include <FastLED.h>
#include <ArduinoHttpClient.h>
#include <WiFiClientSecure.h>
#include "picker.h"
#include "network.h"
#include "network-server.h"
#define NEOPIXEL_PIN 32
#define GRIDLEN 64
#define WFM_PASSWORD "artsy fartsy"
#define MILLISECOND 1
#define SECOND (1000 * MILLISECOND)
#define HTTPS_TIMEOUT (2 * SECOND)
CRGB grid[GRIDLEN];
void setup() {
FastLED.addLeds<WS2812, NEOPIXEL_PIN, GRB>(grid, GRIDLEN);
FastLED.setBrightness(64);
// Maybe it's the plexiglass but for my build I really need to dial back the red
FastLED.setCorrection(0xc0ffff);
network_setup(WFM_PASSWORD);
}
void fade(int cycles = 2) {
int reps = (cycles*GRIDLEN) + random(GRIDLEN);
int hue = random(256);
for (int i = 0; i < reps; i++) {
for (int pos = 0; pos < 8; pos++) {
uint8_t p = cm5xlat(8, (i+pos) % GRIDLEN);
grid[p] = CHSV(hue, 255, pos * 32);
}
FastLED.show();
pause(80);
}
}
void singleCursor(int count = 80) {
for (int i = 0; i < count; i++) {
grid[20] = CHSV(0, 210, 127 * (i%2));
FastLED.show();
pause(120);
}
}
#define NUM_SPARKS 3
void sparkle(int cycles=50) {
int pos[NUM_SPARKS] = {0};
for (int i = 0; i < cycles; i++) {
for (int j = 0; j < NUM_SPARKS; j++) {
grid[pos[j]] = CRGB::Black;
pos[j] = random(GRIDLEN);
grid[pos[j]] = CRGB::Gray;
}
FastLED.show();
pause(40);
}
}
#define NUM_GLITCH 4
#define GLITCH_FRAMES 64
void glitchPulse(int cycles=1000) {
int steps[NUM_GLITCH] = {0};
int pos[NUM_GLITCH] = {0};
CRGB color[NUM_GLITCH];
for (int i = 0; i < NUM_GLITCH; i++) {
steps[i] = GLITCH_FRAMES / NUM_GLITCH * i;
color[i] = CRGB::Brown;
}
for (int frame = 0; frame < cycles; frame++) {
for (int i = 0; i < NUM_GLITCH; i++) {
if (steps[i] == 0) {
steps[i] = GLITCH_FRAMES;
pos[i] = random(GRIDLEN);
color[i] = CHSV(random(256), 64 + random(64), 255);
}
CRGB c = color[i];
int bmask = (0xff * steps[i] / 32) & 0xff;
if (steps[i] == GLITCH_FRAMES/2) {
bmask = 0xff - bmask;
}
c.red &= bmask;
c.green &= bmask;
c.blue &= bmask;
grid[pos[i]] = c;
steps[i]--;
}
FastLED.show();
pause(100);
}
}
void conwayish(int cycles=5000) {
uint8_t total[GRIDLEN];
uint8_t left[GRIDLEN] = {0};
uint8_t hue = random(0, 64);
for (int i = 0; i < GRIDLEN; i++) {
total[i] = random(64, 256);
left[i] = total[i];
}
for (int frame = 0; frame < cycles; frame++) {
for (int i = 0; i < GRIDLEN; i++) {
if (left[i] == 0) {
left[i] = total[i];
if (grid[i].getLuma() == 0) {
grid[i].setHSV(hue, 180, 192);
} else {
grid[i] = CRGB::Black;
}
} else {
left[i]--;
}
}
FastLED.show();
pause(20);
}
}
uint8_t cm5xlat(uint8_t width, uint8_t pos) {
if (width == 0) {
return pos;
}
uint8_t x = pos % width;
uint8_t y = pos / width;
uint8_t odd = y % 2;
return (y*width) + ((width-x-1)*odd) + (x*(1-odd));
}
void cm5(uint8_t width=0, int cycles=200) {
for (int frame = 0; frame < cycles; frame++) {
int val = 127 * random(2);
for (uint8_t pos = 0; pos < GRIDLEN; pos++) {
uint8_t xpos = cm5xlat(width, pos);
if (pos < GRIDLEN-1) {
uint8_t x2pos = cm5xlat(width, pos+1);
grid[xpos] = grid[x2pos];
} else {
grid[xpos] = CHSV(0, 255, val);
}
}
FastLED.show();
pause(500);
}
}
// Art from the network
int NetArtFrames = 0;
CRGB NetArt[8][GRIDLEN];
void netart(int count=40) {
if (NetArtFrames < 1) {
return;
}
for (int i = 0; i < count; i++) {
memcpy(grid, NetArt[i%NetArtFrames], GRIDLEN*3);
FastLED.show();
pause(500);
}
}
uint8_t netgetStatus(uint8_t hue) {
static int positions[4] = {0};
for (int j = 0; j < 4; j++) {
grid[positions[j]] = CHSV(0, 0, 0);
positions[j] = random(GRIDLEN);
grid[positions[j]] = CHSV(hue, 255, 180);
}
FastLED.show();
pause(500);
return hue;
}
void netget(int count=60) {
uint8_t hue = netgetStatus(HUE_BLUE);
#if defined(ART_HOSTNAME) && defined(ART_PORT) && defined(ART_PATH)
if (connected()) {
WiFiClientSecure scli;
hue = netgetStatus(HUE_AQUA);
scli.setInsecure();
HttpClient https(scli, ART_HOSTNAME, ART_PORT);
do {
if (https.get(ART_PATH) != 0) break;
hue = netgetStatus(HUE_GREEN);
if (https.skipResponseHeaders() != HTTP_SUCCESS) break;
hue = netgetStatus(HUE_YELLOW);
int artlen = https.read((uint8_t *)NetArt, sizeof(NetArt));
hue = netgetStatus(HUE_ORANGE);
NetArtFrames = (artlen / 3) / GRIDLEN;
} while(false);
https.stop();
}
#endif
for (int i = 0; i < count; i++) {
netgetStatus(hue);
}
}
const int spinner_pos[4] = {27, 28, 36, 35};
void spinner(int count=32) {
for (int i = 0; i < count; i++) {
int pos = spinner_pos[i % 4];
grid[pos] = CRGB::OliveDrab;
FastLED.show();
pause(125);
grid[pos] = CRGB::Black;
}
}
void loop() {
Picker p;
uint8_t getprob = 4;
if ((NetArtFrames == 0) || !connected()) {
getprob = 16;
}
if (p.Pick(getprob)) {
netget();
} else if (p.Pick(4)) {
netart();
} else if (p.Pick(1)) {
fade();
singleCursor(20);
} else if (p.Pick(1)) {
sparkle();
} else if (p.Pick(4)) {
singleCursor();
} else if (p.Pick(8)) {
conwayish();
} else if (p.Pick(8)) {
glitchPulse();
} else if (p.Pick(2)) {
cm5(0);
} else if (p.Pick(2)) {
cm5(8);
} else if (p.Pick(2)) {
cm5(16);
}
}