hw-rollerderby-scoreboard/main.c

338 lines
4.6 KiB
C

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
// Number of shift registers in your scoreboard
// If you want scores to go over 199, you need 8
const int nsr = 6;
volatile bool tick = false; // Set high when clock ticks
uint16_t time = 0; // Tenths of a second elapsed since boot
// Clocks are in deciseconds
uint16_t score_a = 0;
uint16_t score_b = 0;
int16_t period_clock = -600 * 30;
int16_t jam_clock = -600 * 2;
enum {
SETUP,
JAM,
LINEUP,
TIMEOUT
} state = SETUP;
uint8_t last_controller = 0;
#define cbi(byt, bit) (byt &= ~_BV(bit))
#define sbi(byt, bit) (byt |= _BV(bit))
#define MODE _BV(0)
#define SIN _BV(1)
#define SCLK _BV(2)
#define XLAT _BV(3)
// Connect GSCLK to SCLK
// Connect BLANK to XLAT
// TRUST ME, THIS TOTALLY WORKS
#define NESCLK _BV(4)
#define NESLTCH _BV(5)
#define NESSOUT _BV(6)
// NES Controller buttons
#define BTN_A _BV(7)
#define BTN_B _BV(6)
#define BTN_SELECT _BV(5)
#define BTN_START _BV(4)
#define BTN_UP _BV(3)
#define BTN_DOWN _BV(2)
#define BTN_LEFT _BV(1)
#define BTN_RIGHT _BV(0)
#define bit(pin, bit, on) pin = (on ? (pin | bit) : (pin & ~bit))
const uint8_t seven_segment_digits[] = {
0x7e, 0x48, 0x3d, 0x6d, 0x4b, 0x67, 0x77, 0x4c, 0x7f, 0x6f
};
#define mode(on) bit(PORTD, MODE, on)
#define sin(on) bit(PORTD, SIN, on)
#define sclk(on) bit(PORTD, SCLK, on)
#define xlat(on) bit(PORTD, XLAT, on)
void
latch()
{
xlat(true);
xlat(false);
}
void
pulse()
{
sclk(true);
sclk(false);
}
void
write(uint8_t number)
{
int i;
int j;
// MSB first
for (i = 7; i >= 0; i -= 1) {
sin(number & (1 << i));
for (j = 0; j < 12; j += 1) {
pulse();
}
}
}
void
write_num(uint16_t number, int digits)
{
uint16_t divisor = 1;
int i;
for (i = 1; i < digits; i += 1) {
divisor *= 10;
}
for (i = 0; i < digits; i += 1) {
uint16_t n = (number / divisor) % 10;
write(seven_segment_digits[n]);
divisor /= 10;
}
}
/* Set up grayscale */
void
setup_gs()
{
int i;
for (i = 0; i < nsr; i += 1) {
write(0);
}
latch();
}
/*
* Set up dot correction.
*
* We don't use dot correction so this is easy: set everything to full brightness.
*/
void
setup_dc()
{
int i;
mode(true);
sin(true);
for (i = 0; i < nsr * 96; i += 1) {
pulse();
}
latch();
mode(false);
}
/*
* Update all the digits
*/
void
draw()
{
uint16_t clk;
//XXX testing
#if 1
write_num(jam_clock / 10, 2);
#else
write_num(score_a, 3);
if ((state == TIMEOUT) && (jam_clock % 8 == 0)) {
for (clk = 0; clk < 4; clk += 1) {
write(0);
}
} else {
clk = (abs(period_clock / 10) / 60) * 100;
clk += abs(period_clock / 10) % 60;
write_num(clk, 4);
}
clk = (abs(jam_clock / 600) % 10) * 1000;
clk += abs(jam_clock) % 600;
write_num(clk, 4);
write_num(score_b, 2);
#endif
latch();
pulse();
}
/*
* Probe the NES controller
*/
uint8_t
nesprobe()
{
int i;
uint8_t state = 0;
uint8_t ret = 0;
PORTD |= NESLTCH;
PORTD &= ~NESLTCH;
for (i = 0; i < 8; i += 1) {
state <<= 1;
if (PIND & NESSOUT) {
// Button not pressed
} else {
state |= 1;
}
PORTD |= NESCLK;
PORTD &= ~NESCLK;
}
// Only report button down events.
ret = (last_controller ^ state) & state;
last_controller = state;
return ret;
}
void
update_controller()
{
uint8_t val = nesprobe();
if (val & BTN_A) {
switch (state) {
case JAM:
jam_clock = -300;
state = LINEUP;
break;
default:
jam_clock = -600 * 2;
state = JAM;
break;
}
}
if (val & BTN_START) {
switch (state) {
case TIMEOUT:
break;
default:
state = TIMEOUT;
jam_clock = 1;
}
}
if (val & BTN_LEFT) {
score_a += 1;
}
if (val & BTN_RIGHT) {
score_b += 1;
}
}
/*
* Run logic for this decisecond
*/
void
loop()
{
switch (state) {
case SETUP:
break;
default:
if (jam_clock) {
jam_clock += 1;
}
}
switch (state) {
case SETUP:
case TIMEOUT:
break;
default:
if (period_clock) {
period_clock += 1;
}
}
draw();
}
int
main(void)
{
uint16_t jiffies = 0;
DDRD = ~(NESSOUT);
DDRB = 0xff;
PORTD = 0;
//setup_gs();
setup_dc();
// this combination is for the standard 168/328/1280/2560
TCCR0B = 0x03;
// enable timer 0 overflow interrupt
TIMSK0 = 0x01;
// Enable interrupts
sei();
// Now actually run
for (;;) {
uint32_t i;
update_controller();
if (tick) {
tick = false;
jiffies += 1;
if (jiffies == 10) {
jiffies = 0;
time += 1;
loop();
PORTB ^= 0xff;
}
}
}
}
volatile uint32_t micros = 0;
// This is called every 1024 µs
SIGNAL(TIMER0_OVF_vect)
{
uint32_t m = micros;
m += 1024;
if (m >= 10000) {
tick = true;
m %= 10000;
}
micros = m;
}